Arithmetic operations

Objectives
At the end of the lecture students may learn:
1- Arithmetic operation on binary numbers system.
2- Arithmetic operation on octal numbers system.
3- Arithmetic operation on hexadecimal numbers system.
4- Arithmetic operation on decimal numbers system.
5-Examples.

1- Arithmetic operation on binary numbers system

The addition operation

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0 \quad \text { with carry }=1
\end{aligned}
$$

Example-1: $(111011)_{2}+(10010)_{2}=(\quad)_{2}$
solution:

$$
\begin{array}{r}
111011 \\
+\quad 10010
\end{array}
$$

1001101
Note that the carry = 1

Example-2: $(111.1101)_{2}+(11.01)_{2}=(\quad)_{2}$

$$
\begin{array}{r}
111.1101 \\
+\quad 11.0100
\end{array}
$$

$$
1011.0001
$$

The result is $(1011.0001)_{2}$
Note that the carry=1

Example-3: $(10111110)_{2}+(10001101)_{2}=(\quad)_{2}$

$$
\begin{array}{r}
10111110 \\
+\quad 10001101
\end{array}
$$

$$
101001011
$$

The result (101001011) 2
Note that the carry=1

The subtraction operation

$$
\begin{array}{ll}
0-0=0 & \left.\begin{array}{l}
\text { Example-4 } \\
(10110)_{2}-(1001)_{2}=(~
\end{array}\right)_{2} \\
1-0=1 & \begin{array}{c}
10110 \\
1001
\end{array} \\
0-1=1 . . & \begin{array}{c}
01101 \\
\text { th brow 1) }
\end{array} \\
\begin{array}{l}
\text { The result (01101) } \\
\text { Note that the brow=0 }
\end{array}
\end{array}
$$

(with brow 1)

$$
1-1=0
$$

Subtraction with complements
The direct method of subtraction taught in elementary schools uses the borrow concept. This method, works well when people perform subtraction with paper and pencil. However, when subtraction is implemented with digital hardware, the method is less efficient than the method uses complements.

A binary No-s complement

- One' 1 1's) complement $(0 \square 1,1 \square 0)$
- Two's (2's) complement (1's complement +1)

Example-5: Find 1's complement of the binary number (1110101)
Solution: 1110101
1's complement 0001010

Example-6: Find $(11011)_{2}-(1101)_{2}$ by using 1's complement

Solution:
11011- 01101= $11011+10010=01101$ with carry=1
Note: If carry=1 then the result is equal to(addition result + carry) and the result is positive.

01101
$+\quad 1$

01110

Example-7: Find $(1011)_{2}-(1110)_{2}$ by using 1's complement

Solution: 1011-1110=1011+0001=1100 with carry=0
Note: If carry=0 then the result is equal to 1 's complement of the addition result and the result is negative.
The addition result 1100
1's complement 0011
The result =-0011

Example-8: Find the 2's complement to number (110001) 2

Solution:
110001
1's complement 001110

$$
+\quad 1
$$

001111
The 2's complement of $(110001)_{2}$ is $(001111)_{2}$

Example-9: Find $(11100)_{2}-(0111)_{2}$ by

 using 2's complementSolution:
$11100-00111=11100+11001=10101$ withcarry $=1$
Note: If carry=1 then the result is equal to addition result and the result is positive
Example-10: Find (1111) ${ }_{2}$-(10000) by using 2's complement
Solution: 1111-10000=1111+10000=11111 with carry=0

If carry=0 then the result is equal to 2's complement of the edition result and the result is negative

11111
 1's complement 00000
 $$
+\quad 1
$$

00001 and negative

Example-11: Find (01001-1000) by

 using 2's complement| 9 | 01001 |
| ---: | ---: |
| -8 | +11000 |

$$
\begin{array}{lll}
+ & 1 & 100001
\end{array}
$$

2's complement of -8:

$$
\begin{aligned}
8_{10}=01000 \longrightarrow & 10111 \text { (1's complement) } \\
& +\quad 1 \\
& 11000 \text { (2's complement) }
\end{aligned}
$$

Binary multiplication

$$
\begin{aligned}
& 0 * 0=0 \\
& 0 * 1=0 \\
& 1 * 0=0 \\
& 1 * 1=1
\end{aligned}
$$

Note: remember decimal numbers multiplication.

Example-12: multiply the number $(111)_{2}$ to the number (101) ${ }_{2}$

Solution:

$$
\begin{array}{r}
111 \\
* \quad 101 \\
\hline 111 \\
0000 \\
+\quad \begin{array}{l}
11100 \\
\hline 100011
\end{array} \text { the result }(100011)_{2}
\end{array}
$$

Example-13: Multiply the number $(1.111)_{2}$ to

 the number $(1.001)_{2}$.Solution:
1.111

* 1.001

1111
00000
000000
$+\frac{1111000}{10.000111}$

Binary division

Example-14: Divide the number $(11110)_{2}$ by the number $(101)_{2}$

Arithmetical operation of octal number

- In the process of addition, if the sum is less than or equal to 7 , then it can be directly written as an octal digit.
- If the sum is greater than 7 , then subtract 8 from the digit and carry 1 to the next digit position.
- Note that in this addition the largest octal digit is 7 .

Arithmetical operation of octal number

Octal addition:

Example-15: Add the number (372) to number $(245)_{8}$.
Solution: $\quad 1$

$$
\begin{array}{r}
372(7+4)=11 \geq 8 \rightarrow 11-8=3 \\
+245 \\
\hline 637
\end{array}
$$

the result is (637) $)_{8}$

Arithmetical operation of octal number

$(136)_{8}+(636)_{8}$

Solution:

```
<--- carry
    136
636
    774
    \leftarrow--- 6+6=12>8 in decimal, so in octal 6+6=12-8=14 (4 and carry 1)
```

Therefore, sum $=77 \mathbf{4}_{\mathbf{8}}$

Octal subtraction:

Example-16: subtract the number $(224)_{8}$ from the number $(735)_{8}$.

solution:

$$
\begin{array}{r}
735 \\
-\quad 224 \\
\hline 511
\end{array}
$$

the result is $(511)_{8}$

Example-17

Subtract $532_{8}-174_{8}$

Solution:

336
$\begin{array}{r}-\quad 1748 \\ \hline\end{array}$

Steps:

1. Since $2<4$ then borrow 1 from 3 and add 8 to 2 .
2. $2+8=10$ in decimal so $10-4=6$.
3. In the second column we have 2 after borrowing but $2<7$, so we need to borrow 1 from 5 and add 8 to 2 .
4. $2+8=10,10-7=3$
5. We have 4 after borrowing so we have 4-1=3.

3-Arithmetic operation on hexadecimal numbers

Hexadecimal addition:- follow the steps below:

- For any given hexadecimal digit think of their equivalent in decimal numbers representation.
- If the sum is (15 or less) in decimal it can be directly expressed as hexadecimal digits.
- If the sum is $\geq(16)_{10}$ subtract $(16)_{10}$ \& carry " 1 " to the next position (digit)

Example-18: Find $(58)_{16}+(24)_{16}$
Solution:

$$
\begin{array}{r}
58 \\
+24 \\
\hline 7 C
\end{array}
$$

Example-19: Add the number (FF3) ${ }_{16}$ to number (456) ${ }_{16}$. 11
FF3 $(F+5)=20 \geq 16 \rightarrow 20-16=4$
$+456(F+4+1)=20 \geq 16 \rightarrow 20-16=4$
(1449) ${ }_{16}$ (Note that the carry=1)

Hexadecimal subtraction:

- can be directly found
- It can be found by converting to binary , then converting back to hexadecimal.
- using the 1's \& 2's complement in hexadecimal.

Example-20: subtract the number(CDF.26) ${ }_{16}$ From the number(AC44.22) ${ }_{16}$.
Solution:
AC44.22

- CDF. 26
$(\overline{9 F 64 . F C})_{16}$ (note that borrow=0)

Using 1's \&2's complement in hexadecimal numbers:

- 1 's complement= FFF- $\mathrm{No}(\mathrm{xxx})_{16}$
- 2's complement = 1's complement+1

Example-21: Find 2's complement of the hexadecimal number (3A5) ${ }_{16}$.
Solution:
FFF

	$\begin{array}{r}-3 A 5 \\ \hline\end{array}$ 'S complement
	$\begin{array}{r}\text { C5A } \\ +1\end{array}$
2'S Complement	C5B

4-Arithmetical operation on decimal numbers

Decimal numbers complements:-
9's complement: it is obtained by subtracting each digit from 9.
10's complement: it is obtained by adding 1 to the 9's complement value.

Example-22:
9's complement of 546700 is 453299
10 's complement of 546700 is 453300

Note: complement are used in digital computers for simplifying the subtraction operation.

Rules:-

A-For $\mathrm{M}>\mathrm{N}$, the sum produce an end carry, which can be discarded and the left is the result Of (M-N).
B - For $\mathrm{M}<\mathrm{N}$, The sum does not produce an end carry and to obtained the answer in a familiar form, take the 10's complement of the sum and place a negative sign in front .

Example-23: Using 10's complement subtract:

$$
\begin{gathered}
(72532)_{10}-(3250)_{10}=(\quad)_{10} \\
\mathrm{M}>\mathrm{N} \quad \mathrm{M}=72532
\end{gathered}
$$

$$
10^{\prime} \text { S complement of } N+96750
$$

$$
169282
$$

Discard the end carry $1 \&$ the result is $(69282)_{10}$

Example-24:Using 10's complement subtract:

$$
\begin{array}{rl}
(3250)_{10}-(72532)_{10} & =(\\
M & <N \\
M &)_{10} \\
M & 03250
\end{array}
$$

10 'S complement of $N+27468$ 30718
There is no carry , therefore the answer is - (10's complement of the sum 30718)
The result= -69282

Reference:
Digital Fundamentals, Thomas L. Floyd, chapter two, Eleventh Edition, 2015, Pearson

Thank you

with best wishes

