Coding system

Objectives:-
At the end of the lecture students may learn:

1- Binary coded decimal (BCD-8421)
2- The 2421-code
3- The Gray code
4- Excess-3 code

1-Binary coded decimal (BCD-8421)

Code have been used for security reasons, so that others will not be able to read the message. There are many types of codes, each of them have 4-bits and different weight.
BCD(8421) code is most commonly used for the decimal digits is the straight binary assignment as listed below. This code gives the 4-bits code for one decimal digit. A number with K decimal digits will require 4 K bits in BCD . It is easy of converting it to decimal numbers and vice versa. It is unable to code binary numbers greater than 9 .

Note:- the binary combinations 1010 through 1111 are not valid and have no meaning in BCD code.

Decimal	BCD-8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Note: (1010, 1100,1101,1110,1111) are invalid in BCD-8421 code.

Conversion from decimal to BCD or BCD to decimal numbers.
Example-1: $(937.25)_{10} \square()_{B C D}$ Solution: (100100110111.00100101$)_{B C D}$ Example-2: $(1000101.011001)_{B C D} \square()_{10}$ Solution: 01000101.01100100

$$
4 \quad 5.64
$$

the result $(45.64)_{10}$

BCD-8421 Addition

- Add two BCD numbers, using rules for binary addition
- If a 4-bits sum ≤ 9, it is a valid BCD number.
- If a 4-bits sum > 9, or if a carry out of the 4 -bits group is generated it is invalid, the result add $6(0110)$ to the 4 -bits sum in order to skip the six invalid state and return the code to BCD-8421
- If a carry result when 6 is added, add the carry to next 4-bits group

Example-3: Add the following numbers using BCD addition.

$$
\text { 1-(45) } \left.\left.\begin{array}{rl}
10 & +(33)_{10}=(
\end{array}\right)\right)_{B C D}
$$

The result is $(01111000)_{B C D}$

$$
2-(47)_{10}+(35)_{10}=(\quad)_{B C D}
$$

01000111
 + 00110101

$$
\begin{array}{rl}
0111 & 1100 \\
1 & 0110+
\end{array} \quad(12>9, \text { add } 6)
$$

10000010
$82 \operatorname{result}(82)_{10}=(10000010)_{B C D}$

$$
3-(59)_{10}+(38)_{10}=(\quad)_{B C D}
$$

01011001

+ 00111000
$\frac{1^{1}{ }_{1001}{ }_{10001} \quad(17>9) \text { and carry } 1}{}$ $0110+\quad$ (add six)
10010111
97 result (97) $)_{10}=(10010111)_{B C D}$

$$
4-(67)_{10}+(53)_{10}=(\quad)_{B C D}
$$

01100111
 $+01010011$

$\begin{array}{ccc}(11>9) & 1011 & 1010 \quad(10>9) \\ 0110 & 0110+ \\ 1+ & \\ & & \end{array}$
000100100000 result (120) 10

2- The 2421-code

Decimal	2421	
0	0000	
1	0001	
2	0010	\leftarrow
3	0011	\leftarrow
4	0100	\leftarrow
5	1011	\leftarrow
6	1100	\leftarrow
7	1101	\leftarrow
8	1110	\leftarrow
9	1111	

Conversion from decimal to 2421 or from 2421 to decimal

Example-4: $(34.5)_{10} \quad \square()_{2421}$
Solution: $(34.5)_{10}=(00110100.1011)_{2421}$
Example -5: $(11011.01)_{2421} \square(\quad)_{10}$ Solution: 00011011.0100

$$
\left(\begin{array}{lll}
1 & 5
\end{array}\right)_{10}
$$

Note: there are six invalid cases: (0101,0110,0111,1000,1001,1010)
5
6
7
8
9
10

3- The Gray code

Decimal	Binary	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Binary-to- Gray code conversion

- It is not a weighted code.
- It is not an arithmetic code
- It exhibits only a single bit change from one number to the next.
- The most significant bit (MSB) in the Gray code is the same as the corresponding (MSB) in the binary numbers.
- Going from left to right, add each adjacent pair of binary code bits to get the next Gray code bit.

Example-6: $1 \rightarrow 0 \rightarrow 1 \rightarrow 1 \rightarrow 0 \quad$ Binary $\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & \text { Gary }\end{array}$

Gray - to - Binary conversion
-(MSB) in the binary code is the same as the corresponding bit in the Gray code.

- Add each binary code bit generated to the gray code bit in the next adjacent position.
Example-7: $\begin{gathered}1 \\ 1 \\ 1\end{gathered} / \begin{array}{llll}1 \\ \downarrow\end{array} / \begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0\end{array}$

4- Excess-3 code

The excess-3 code is an important 4-bits code some times used with binary-coded decimal(BCD) numbers. To convert any decimal number into its excess- 3 form, add 3 to each decimal digit, and then convert the sum to a BCD number.

- It is also a self- complementing code
- There are 6 -invalid cases(0000,0001,0010,1101,1110,1111)

$$
\begin{array}{llllll}
0 & 1 & 2 & 13 & 14 & 15
\end{array}
$$

Decimal	Binary	Excess-3 Code
	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Decimal - to - Excess-3 code conversion

Example-7: $(12)_{10} \square(\quad)_{\mathrm{XS}-3}$
Solution: 12
$\begin{array}{r}+3 \quad 3 \\ \hline 4 \quad 5\end{array}$
Binary 01000101
the result $\quad(01000101)_{\mathrm{xs}-3}$

Example-8: (29) ${ }_{10}$
$)_{x s-3}$

Solution:

29
$+33$
$5 \quad 12$
Binary (0101 1100)
The result
(01011100$)_{\mathrm{xs}-3}$

Excess-3 code -to - decimal conversion

