Boolean algebra

Objectives:
1- Basic rules of Boolean algebra.
2- De Morgan's theorems.
3- Boolean expression for a logic circuit.
4- The sum of product (SOP) form.
5- The product of sum (POS) form.
6- Examples

1-Basic rules of Boolean algebra
1.1- Boolean Addition (OR gate)

$$
\begin{aligned}
& A+0=A \\
& A+1=1 \\
& A+A=A \\
& A+\bar{A}=1
\end{aligned}
$$

1.2- Boolean Multiplication (AND gate)

$$
\begin{array}{ll}
\mathrm{A} \cdot 0=0 & \mathrm{~A} \cdot 1=\mathrm{A} \\
\mathrm{~A} \cdot \mathrm{~A}=\mathrm{A} & \mathrm{~A} \cdot \bar{A}=0
\end{array}
$$

1.3-Commutative laws
$A+B=B+A$
A. $B=B \cdot A$
1.4- Associative laws
$A+(B+C)=(A+B)+C$
A. (B.C $)=(A . B) . C$
1.5-Distribution law

$$
\begin{array}{cc}
A \cdot(B+C)=A B+A C & \text { (Left distribution law) } \\
(B+C) \cdot A=B A+C A & \text { (Right distribution law) }
\end{array}
$$

1.6- Double complement theorem

$$
\overline{\bar{A}}=\mathrm{A} \quad \overline{\bar{A}}=\bar{A}
$$

2- De Morgan's theorem

$$
\overline{(A+B)}=\bar{A} \cdot \bar{B}
$$

$\overline{(A . B})=\bar{A}+\bar{B}$

Other theorem can be derived from the basic laws above:

1- $A+A B=A$
2- $A B+A \bar{B}=A$
3- $(A+\bar{B}) \cdot B=A B$
4- $(A+A) \cdot(A+\bar{B})=A$

$$
\begin{aligned}
& 5-(A+B) \cdot(A+C)=A+B C \\
& 6-A(A+B)=A \\
& 7-A+\bar{A} B=A+B
\end{aligned}
$$

Example-1: prove $\overline{A+B}=\bar{A} \cdot \bar{B}$

X	Y	\bar{A}	$\overline{\mathrm{~B}}$	$\overline{(A+B)}$	$\bar{A} \cdot \overline{\mathrm{~B}}$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Example-2: Apply De Morgan's theorem to the expressions $\overline{X Y Z}$ and $\overline{X+Y+Z}$

Solution:

$$
\begin{aligned}
& \text { 1) } \overline{X Y Z}=\bar{X}+\bar{Y}+\bar{Z} \\
& \text { 2) } \overline{X+Y+Z}=\bar{X} \bar{Y} \bar{Z}
\end{aligned}
$$

Home work: Apply De Morgan theorems to each of the following expressions.

1) $\overline{(A+B+C) D}$
2) $\overline{A B C+D E F}$
3) $\overline{(A+B)}+\bar{C}$

Home work: Apply De Morgan's theorems to each of the following expressions.

(a)

$\overline{(\overline{A+B})+\bar{C}}$
(b)
$(\bar{A}+B)+C D$
(c) $(A+B) \bar{C} \bar{D}+E+\bar{F}$

3- Boolean expression for logic circuit:

Example-3:

For the example circuit in Figure below, the Boolean expression is determined in the following three steps:

1. The expression for the left-most AND gate with inputs C and D is CD .
2. The output of the left-most AND gate is one of the inputs to the OR gate and B is the other input. Therefore, the expression for the OR gate is $\mathrm{B}+\mathrm{CD}$.
3. The output of the OR gate is one of the inputs to the right-most AND gate and A is the other input. Therefore, the expression for this AND gate is $A(B+$ $C D$), which is the final output expression for the entire circuit.

Example-4: Using Boolean algebra techniques, simplify this expression and draw the logic circuit

$$
F=(A B+A(B+C)+B(B+C)
$$

Solution:
$A B+A(B+C)+B(B+C)$
$=A B+A B+A C+B B+B C$
$=(A B+A B)+A C+(B+B C)$
$=A B+A C+B$
$=B+A C$

Example-5: Simplify the following_Boolean expression: $\mathrm{AB}+\mathrm{AC}+\bar{A} \bar{B} \mathrm{C}$
Solution:

$$
\begin{aligned}
& \overline{(A B)} \overline{(A C)}+\bar{A} \bar{B} \mathrm{C} \\
= & (\bar{A}+\bar{B})(\bar{A}+\bar{C})+\bar{A} \bar{B} \mathrm{C} \\
= & \bar{A} \bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} \mathrm{C} \\
= & \bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C} \\
= & \bar{A}+\bar{B} \bar{C}
\end{aligned}
$$

Home work: Draw the logic diagrams for the following Boolean expressions

1) $\mathrm{Y}=\bar{A} \bar{B}+\mathrm{B}(\mathrm{A}+\mathrm{C})$
2) $Y=B C+A \bar{C}$
3) $Y=A+C D$
4) $Y=(A+B)(\bar{C}+D)$

4-The sum Of products (SOP) Form

A product term was defined as term consisting of product of variable or their complements. When two or more product terms are summed by Boolean addition, the resulting expression is a sum of product (SOP). Some example are:
$\mathrm{AB}+\mathrm{ABC}$
$\mathrm{ABC}+\mathrm{CDE}+\bar{B} \mathrm{C} \bar{D}$
$\bar{A} \mathrm{~B}+\bar{A} \mathrm{~B} \bar{C}+\mathrm{AC}$

5-The product of sums (POS) Form

A sum term was defined as term consisting of sum of variables or their complements. When two or more sum terms are multiplied, the resulting expression is a product of sums (POS).
Some example are:
$(\bar{A}+\mathrm{B})(\mathrm{A}+\bar{B}+\mathrm{C})$
$(\bar{A}+\bar{B}+\bar{C})(\mathrm{C}+\bar{D}+\mathrm{E})(\bar{B}+\mathrm{C}+\mathrm{D})$
$(\mathrm{A}+\mathrm{B})(\mathrm{A}+\bar{B}+\mathrm{C})(\bar{A}+\mathrm{C})$

Consider the truth table (T.T) for three variables given below using SOP and POS

X	Y	Z	SOP (Minterms)	Designation	POS (Maxterms)	Designation
0	0	0	$\bar{X} \overline{\bar{Y}} \bar{Z}$	m 0	$X+Y+Z$	M 0
0	0	1	$\bar{X} \overline{\bar{Y}} Z$	m 1	$X+Y+\bar{Z}$	M 1
0	1	0	$\bar{X} Y \bar{Z}$	m 2	$X+\bar{Y}+Z$	M 2
0	1	1	$\bar{X} Y Z$	m 3	$X+\bar{Y}+\bar{Z}$	M 3
1	0	0	$X \bar{Y} \bar{Z}$	m 4	$\bar{X}+Y+Z$	M 4
1	0	1	$X \bar{Y} Z$	m 5	$\bar{X}+Y+\bar{Z}$	M 5
1	1	0	$X Y \bar{Z}$	m 6	$\bar{X}+\bar{Y}+Z$	M 6
1	1	1	$X Y Z$	m 7	$\bar{X}+\bar{Y}+\bar{Z}$	M 7

Example-6: Drive Boolean expression (B.E) using SOP and POS methods for 3 -inputs \& the output will be high (1) when the binary input values equal ($1,4,7$).

Solution:

In SOP; $\mathrm{F}=\sum m(1,4,7)=\mathrm{ml}+\mathrm{m} 4+\mathrm{m} 7=\bar{X} \bar{Y} Z+X \bar{Y} \bar{Z}+X Y Z$
In POS; $\mathrm{F}=\pi \mathrm{M}(0,2,3,5,6)$
$=(X+Y+Z) \cdot(X+\bar{Y}+Z) \cdot(X+\bar{Y}+\bar{Z}) \cdot(\bar{X}+Y+\bar{Z}) \cdot(\bar{X}+\bar{Y}+Z)$

Example-7: From the truth table below, determine the standard SOP expression and the equivalent standard POS expression.

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1

Solution: There are four 1 s in the output: $011=\bar{X} Y Z$
$100=X \bar{Y} \bar{Z}$
$110=X Y \bar{Z}$
$111=X Y Z$
$\mathrm{F}=\bar{X} Y Z+X \bar{Y} \bar{Z}+X Y \bar{Z}+X Y Z$
(For the SOP expression, the output is 1)

For the POS expression, the output is 0 :
$000=X+Y+Z$
$001=X+Y+\bar{Z}$
$010=X+\bar{Y}+Z$
$101=\bar{X}+Y+\bar{Z}$
The resulting standard POS expression for the output F is $\mathrm{F}=(X+Y+Z)(X+Y+\bar{Z})(X+\bar{Y}+Z)(\bar{X}+Y+\bar{Z})$

Example-8: Design a logic circuit with 3-inputs and the output will be high (1) when the binary input values less than 3 using SOP \& POS methods.

Solution:

X	Y	Z	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

SOP: $\mathrm{F}=\bar{X} \bar{Y} \bar{Z}+\bar{X} \bar{Y} Z+\bar{X} Y \bar{Z}$
POS: $\mathrm{F}=(X+\bar{Y}+\bar{Z})(\bar{X}+Y+Z)(\bar{X}+Y+\bar{Z})(\bar{X}+\bar{Y}+Z))(\bar{X}+\bar{Y}+\bar{Z})$
Example- 9: Design a logic circuit with 3-inputs \& the output will be high (1) when a majority of inputs are high (1) using SOP \& POS methods;
Solution:
SOP: $\mathrm{F}=\bar{X} Y Z+X \bar{Y} Z+X Y \bar{Z}+X Y Z$
POS: $\mathrm{F}=(X+Y+Z)(X+Y+\bar{Z})(X+\bar{Y}+Z)(\bar{X}+Y+\bar{Z})$

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1) References
2) Digital Fundamentals, Thomas L. Floyd, Eleventh Edition, 2015, Pearson.
3) Digital design, M. Morris Mano and Michael D. Ciletti, Fifth Edition, 2013, Pearson.

> Thank you With best wishes

