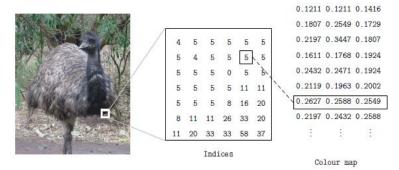
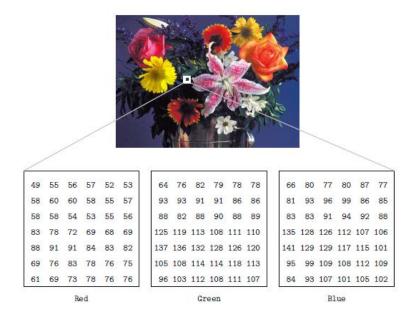

Lecture 1

Image Processing with MATLAB

Types of digital images


Binary: Each pixel is just black or white. Since there are only two possible values for each pixel, only need one bit per pixel.


Greyscale: Each pixel is a shade of grey, normally from 0 (black) to 255 (white). This range means that each pixel can be represented by eight bits, or exactly one byte.

Indexed: Using two matrices, matrix data and color matrix (color map).

Color: Color images can be represented by using three 2D matrices of the same size, one for every color channel: red (R), green (G), and blue (B) each matrix element contains an 8-bit value, refers to the amount of red, green, or blue at that point in a [0, 255] scale.

Digital Image File Formats

- PPM (Portable Pix Map)
- TIFF (Tagged Image File Format)
- GIF (Graphics Interchange Format)
- JPEG (Joint Photo graphic Experts Group) format
- BMP (Windows Bitmap)
- PNG (Portable Network Graphics)
- XWD (X Window Dump)

Reading image

A = imread(filename,*fmt*)

reads a grayscale or true color image named filename into A. If the file contains a grayscale intensity image, A is a two-dimensional array. If the file contains a true color (RGB) image, A is a three-dimensional (m-by-n-by-3) array.

Displaying image

imshow(f)

Ex:

f=imread('tire.tif');

imshow(f)

Displaying Multiple Images

1. Display each image in the form of (separate figure).

Ex:

```
f=imread('tire.tif');
figure,imshow(f)
I=imread('cameraman.tif');
figure,imshow(I)
```

2. Display multiple images in the same figure using imshow associated with subplot.

Ex:

f=imread('tire.tif'); I=imread('cameraman.tif'); subplot(1,2,1), imshow(f)

subplot(1,2,2), imshow(I)

Conversion between image types

Name	Value	Description
gray2ind	[X,map]=gray2ind(I,n)	Convert image from grayscale to indexed
ind2gray	I = ind2gray(X,map)	Convert image from indexed to grayscale
ind2rgb	RGB= ind2rgb(X,map)	Convert image from indexed to color
rgb2ind	[X,map]=rgb2ind(RGB,n)	Convert image from color to indexed
rgb2gray	I = rgb2gray(RGB)	Convert image from color to grayscale
im2bw	BW = im2bw(I,level)	Convert image (rgb, gray, indexed) to binary, level between 0, 1.

Conversion between Data types

Data Type	Range	Description
int8	-128_127	8-bit integer
unit8	0_255	8-bit unsigned integer
int16	-32768_32767	16-bit integer
unit16	0_65535	16-bit unsigned integer
double	Machine specific	Double precision real number

Information about image

A great deal of information can be obtained with the imfinfo or whos function.

Ex:

imfinfo('football.jpg')

Ex:

```
a=imread('football.jpg');
```

whos a

Definitions:

Rotation:

B = imrotate(A,angle,method)

A is image.

Angle is the angle (in degrees) you want to rotate your image in the counter Clock wise direction.

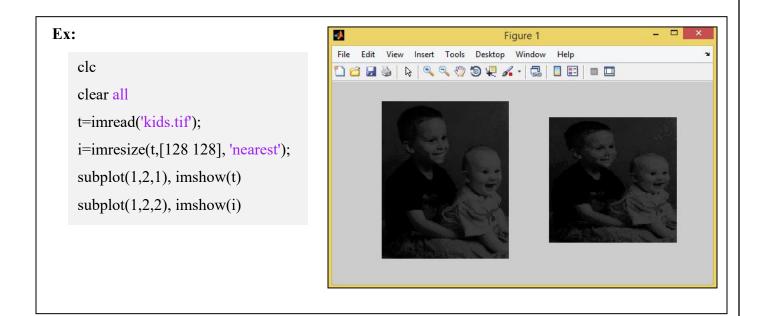
Method is a string that can have one of these values:

Lecture 1

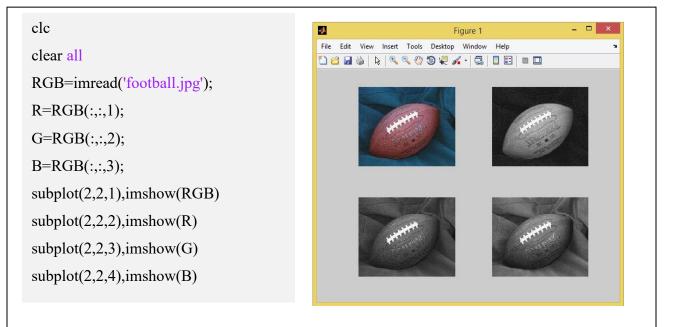
Value	Description
'nearest'	Nearest-neighbor interpolation
'bilinear'	Bilinear interpolation
'bicubic'	Bicubic interpolation

Ex:	Figure 1 - × File Edit View Insert Tools Desktop Window Help ~ Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols Cols
clc clear all a=imread('football.jpg'); o=imrotate(a,90,'nearest') subplot(1,2,1), imshow(a) subplot(1,2,2), imshow(o)	

Scaling:


B = imresize (A,scale,method)

A is your image.


Scale is the size of A

Method is a string that can have one of these values:

Method Name	Description
'nearest'	Nearest-neighbor interpolation; the output pixel is assigned the value of the pixel that the point falls within. No other pixels are considered.
'bilinear'	Bilinear interpolation; the output pixel value is a weighted average of pixels in the nearest 2-by-2 neighborhood
'bicubic'	Bicubic interpolation (the default); the output pixel value is a weighted average of pixels in the nearest 4-by-4 neighborhood

Example to display (Red,Green,Blue) for color image

