Unit 4
Basic Computer:

!'_ Hardwired Control Unit

i Purpose of This Chapter

= In this chapter we introduce a basic
computer and show how its operation
can be specified with register transfer
statements.

i Instruction Codes

A process is controlled by a program

= A program is a set of instructions that
specify the operations, data, and the
control sequence

= An instruction is stored in binary code that
specifies a sequence of microoperations

= Instruction codes together with data are
stored in memory (Stored Program
Concept)

Program statements and
i computer instructions

/

\

Computer 1nstruction

~

/

N N

-

\

a

\

Field specifying the
operation to be executed

Field specifying the data

_ /

To be operated on

\ J

i Instruction code format

= Instruction code format with two parts :
Op. Code + Address

= Op. Code : specify 16 possible operations(4 bits)

= Address : specify the address of an operand(12
bits)

= If an operation in an instruction code does not

need an operand from memory, the rest of the bits

in the instruction(address field) can be used for
other purpose

15 12 11 0 15 12 11 0

Op. Code Address data

instruction Not an instruction

iComponents of Instructions

= Operations (opcodes)
= Number of operands (Number of data locations)

opcode:add value in srcl to

value in src2 and place the add rl,r2,r3
result in dst. / 7\]\
opcode srcl [src2 | dst
ADD R1, R2, R3 R1 < R2+R3

= Instruction encodings

Number of Operands per
Instruction

No OperandsHALT NOP

1 operand NOT R4 R4 < R4

2 operands ADD R1, R2 R1 < R1+R2

3 operands ADD R1, R2, R3 R1 < R2+R3

> 3 operands MADD R4,R1,R2,R3 R4 < R1+(R2*R3)

Each specify one operation and 1,2, 3 or 4 data locations.

Instructions are read from memory as

:M/ords

= Instructions can be formatted to fit in one or
more memory words.

= An instruction may contain
= An opcode + data (immediate operand)
= An opcode + the address of data (direct addressing)

= An opcode + an address where the address of the data
is found (indirect addressing)

= Data only (location has no instructions)

= An opcode only (register-reference or input/output
instruction)

Building A Basic Computer!

The basic computer instructions are
stored in the memory

1. Memory

The size of each memory word is 16 bits. Laddress \ bontents \
< \i

Each instruction occupy one word.

2. Program Counter

PC 000000000001

3. Instruction Register

IR 0101 010101010101

”

r 0000000000000001 0101010101010101
0000000000000010 1010101010101010
0000000000000011 1100110011001100
0000000000000100 0011001100110011
0000000000000101 0101010101010011
0000000000000110 1010101010101010
0000000000000111 1100110011001100
0000000000001000 0011001100110011

<«

The address register is connected to the

memory

The Program Counter points to
the next address of the program

1. Program Counter Increments

by units of addresses

2. The next address 1s put on
the bus and 1s loaded into the
Address Register

3. The Bits of the AR are wired
directly to the RAM Address
lines to enable loading the
memory into the Instruction R.

PC

AR

000000000010

+1

1000000000010

Direct access to

Memory

IR

1010

101010101010

i Direct address

Occurs When the Operand Part Contains the Address of
Needed Data.

1. Address part of IR is placed on the bus and loaded
back into the AR

2. Address is selected in memory and its Data placed on
the bus to be loaded into the Data Register to be used for
requested instructions

i Direct address

o

I}“AIID

457

i Indirect address

Occurs When the Operand Contains the Address of the Address
of Needed Data.

1. Address part of IR 1s placed on the bus and loaded back
into the AR

2. Address is selected in memory and placed on the bus to be
loaded Back into the AR

3. New Address is selected in memory and placed on the bus
to be loaded into the DR to use later

i Indirect address

35{ 1)A]]D 300
-

300 1350

1350 | Operand

i Effective address:

o Effective address: Address where an
operand is physically located

22{(0| JADD 457 354 1|)ADD 300

300)350

Effective address: 457 Effective address: 1350

Direct and Indirect addressing example

1S 14 1211 O
I | (Spcods (AddressH
Addres ing Instructi format
Mode . struction MemoxXy
22| o| abpD 457 25| 1| AaDD 200
200 { 13S0
v /
457 Opexrand Y
13S0 Operxrand

BC BC

Direct address Indirect aaddress

Mano’s Computer Figure 5-4 :

2

N
—_—
VI

Y

Address

Y

Y

Y

Y

\4

\4

Clock

Computer System Architecture, Mano, Copyright (C) 1993 Prentice-Hall, Inc.

Computer Registers

—Accumulator(AC) : takes input from ALU
» The ALU takes input from DR, AC and INPR :

»ADD DR to AC, AND DR to AC

—Note) Input register is not connected to the bus.
—The input register is connected only to the ALU

DR

I
LD

|
INCR CLR

ALU

o
e

AC

|
LD

INCR CLR

— |

INPR

5-2 Computer Registers

= Data Register(DR) : hold the operand(Data) read from memory
= Accumulator Register(AC) : general purpose processing register

= Instruction Register(ZR) : hold the instruction read from
memory

= Temporary Register(7R) : hold a temporary data during
processing

= Address Register(4AR) : hold a memory address, 12 bit width

i 5-2 Computer Registers

= Program Counter(PC) :

= hold the address of the next instruction to be read from
memory after the current instruction is executed

= Instruction words are read and executed in sequence
unless a branch instruction is encountered

= A branch instruction calls for a transfer to a
nonconsecutive instruction in the program

= The address part of a branch instruction is transferred to
PC to become the address of the next instruction

= 10 read instruction, memory read cycle is initiated, and
PC is incremented by one(next instruction fetch)

i 5-2 Computer Registers

= Input Register(ZNPR) : receive an 8-bit
character from an input device

= Output Register(OUTR) : hold an 8-bit
character for an output device

i 5-2 Computer Registers

Register Number. Register Register

symbol of bits name Function-

DR 16 Data register Holds memory operands
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data

INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

Mano’'s Computer: each instruction

occupies one Memory Words
15 12 11 0

* 4-bit opcode Bits 15-12

 How many possible instructions?
— 24=16

* This leaves 12 bits for the address

— How many words of memory?
— 212= 22210 = 4K = 4096 16-bit words

Mano's simple Computer:

Instructions
15 12 11 0
N\ e
- Any bits other than 0111 and
I < | 1111 are called memory reference
instructions
000 AND 100 BUN
001 ADD (Branch Unconditional)
010 LDA 101 BSA
(Load Accumulator) (Branch and Store Address)

011 STA 1101SZ

(Store Accumulator) (Increment and Skip if Zero)

Hex Code
Symbol I=0 I=1 Description
AND Oxxx 8xxx And memory word to AC
ADD Txxx 9xxx Add memory word to AC
LDA 2XXX AXxx Load memory word to AC

STA 3xxx Bxxx Store content of AC in memory
BUN 4dxxx Cxxx Branch unconditionally

BSA 5xxx Dxxx Branch and Save retum address
57 bxxx Exxx Increment and skip if zero

CLA 7800 Clear AC

CLE 7400 Clear E

CMS 7200 Complement AC

CME m 7100 e Comp

CR 7080 Circulate right AC and E

CL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION FO80 Interrup

IOF F040 Inter

5-3. Computer Instruction

— 3 Instruction Code Formats : Fig. 5-5 Hex Code
. . Symbol I=0 I=1 Description
*Memory-reference instruction A Oxx B And memory word to AC
ADD Txxx 9xxx Add memory word to AC
—OpCOde — OOO ~ 110 LDA 2xxx Axxx Load memory word to AC
STA 3xxx Bxxx Store content of AC in memory
- »I_O . OXXX =~ 6XXX; |_1 . 8XXX ~EXXX BUN dxxx Cxxx Branch unconditionally
[=0 : Direct, 15 14 12 11 0 BSA XXX Dxxx Branch and Save retum address
I=1 : Indirect Y Bxxx Exxx Increment and skip if zero
| 1] Opcode e A 7800 Clear AC
CLE 7400 Clear E

»Register-reference instruction NS 7200 Complement AC
CME m 7100 e Comp

— /XXX (7800 ~ 7001) : CLA, CMA’ { CR 7080 Circulate right AC and E

CL 7040 Circulate left AC and E
15 14 12 11 0 INC 7020 Increment AC
ol1 1 1 Register Operation SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
L SZA 7004 Skip next instruction if AC zero
_|nput-0utput instructioxn SZE 7002 Skip next instruction if E s 0
HLT 7001 Halt computer
—Fxxx(F800 ~ F040) : INP, OUT, ION, SKI F800 Iput character to AC
ouT F400 Output character from AC
15 14 2 1 0 SKI F200 Skip on input flag
SKO F100 Skip on output flag
Ij1 1 1 I/O Operation ION F080 Iterrup

IOF F040 Inter

Common Bus System

The basic computer has eight registers, a
memory unit, and a control unit.

= Paths must be provided to transfer
information from one register to another and
between memory and registers

= A more efficient scheme for transferring |
information in a system with many registers is
to use a common bus.

Mano’s Computer Figure 5-4 :

2

N
—_—
VI

Y

Address

Y

Y

Y

Y

\4

\4

Clock

Computer System Architecture, Mano, Copyright (C) 1993 Prentice-Hall, Inc.

i Common Bus System

= The connection of the registers and memory of
the basic computer to a common bus system :

The outputs of seven registers and memory are connected
to the common bus

The specific output is selected by mux(S0, S1, S2) :

Control Input : LD, INC, CLR, Write, Read

i COMMON BUS SYSTEM

= Control variables: the bus is
controlled by

= 1- Selection switches for selecting the
source of information and

= 2- Enable switches at the destination
device to accept the information.

i Selection variables

= Selection variables: select a register or the
memory whose output is used as an input to
the common bus.

= [0 select one device out of 8, we need 3
select variables.

= For example, if 5251S0 = 011, the output of
DR is selected as an output of the common
bus.

i Load input

Load input (LD): Enables the input of a
register to download bits form the
common bus. When LD = 1 for a
register, the data on the common bus is
read into the register during the next
clock pulse transition.

> Increment input (INR): Increments the content of a register.
> Clear input (CLR): Clear the content of a register to zero.

Incompatibility in register sizes

+

= *» \When the contents of AR or PC (12 bits) are
applied to the 16-bit common bus, the four
most significant bits are set to zero. When AR
or PC receives information from the bus, only
the 12 least significant bits are transferred to
the register.

12 least significant bits
v

12 bits

Mano’s Example of Basic Computer (Section 5.9)

Memory: 4096x16 bits

The basic computer consists of a
4096 words of 16 bits memory unit

SC 4 bits || AR,PC 12 bits

DR,AC, IR,TR 16 bits || OUTR,INPR 8 bits

Seven Flip-Flops

I(1 bit)||S(1 bit)|[E(1 bit)| [R(1 bit) [[[EN(1 bit) |[FGI(1 bit) |[FGO(1 bit)

Adder and Logic circuit
connected to the AC input

Control Logic Gates:

Signals to control the

the nine registers’ inputs
memory read and write

F/Fs set, clear, or
complement

S2 S1 SO bus selection

the AC ,ALU circuit

Two decoders: 3 x 8(opcode)
and 4 x 16 timing decoder

ALU
16 bits

Nine registers : AR,
PC(12bits each), DR, AC,

IR, TR(16 bits each),

Control Unit

Logic gates

OUTR, INPR(8 bit each),
and SC(4bits)
Seven F/Fs: I, S, E, R,

3x8 DEC, 4x16 DEC | IEN, FGI, and FGO (1 bit

BUS: 81 MUX
16 bits

each)
A 16-bit common bus

i IR and TR

= The instruction register, IR, can only be
loaded; it cannot be incremented nor cleared.
Its output is used to generate Di’s and Ti’s
control signals.

= TR is a temporary register. The CPU uses this
register to store intermediate results of
operations. It is not accessible by the external
programs. It is loaded, incremented and
cleared like the other registers.

Operations involve AC and DR Registers

Accumulator(AC) :

—>
s —> Bus
—>

Main Register ~ Wem ory unt ;
i] 4096 x16 Address
Microoperation : clear ‘ ‘
. Write Read
AC, shift AC X R | 1
Ll) N‘R CI‘_R L
. . PC | 2
Data Register : ADD | P
DR to AC,ANDDR to | ————+—— » :
AC LD NR CLR
\\ Addd r v | .
L Ll) ‘—_’N‘R CI‘_R B
3) INPR: Input device
NPR
S—— ;
; |
! TR | 6
Ll) N‘R CI‘_R B
0UTR
b C bck
< 16-bitcommon bus+——

Computer Instruction

3 Instruction Code Formats :
1-Register-reference instruction

—7/xxx (7800 ~ 7001):
CLA, CMA,

15 14 12 11 0

of1 1 1

Register Operation

2-Input-Output instruction

—Fxxx(F800 ~ FO040) : INP,
OUT, ION, SKI, ..=-

15 14 12 11 0

{1 1 1

3-Memory-reference instruction
Opcode =000 ~ 110
[=0 : Oxxx ~ 6xxX%, [=1: 8xXX

~Exxx

15 14 12 1 0)

I=0 : Direct,

Address

I/O Operation -<

I=1 : Indirect/| I [Opcode

Hexadscimal code
Symbol I=10 [=1 Description
Register Refirence
CLA 01111000 0000 0000 Clear AC 7800 (B,, bit)
CLE 0111 0100 0000 0000 ClearE
CMA 01110010 0000 0000 Complement AC
CME 01110001 0000 0000 Complament E
CIR 01110000 1000 0000 Cirenlate tight ACand E
CIL 01110000 0100 0000 Cirenlate left AC and E
INC 01110000 0010 0000 Ihctemment AC
SPA 01110000 0001 0000 Skip next ingtruction if AC positive
SNA 011100000000 1000 Skip next instruction if AC negative
SZA 01110000 0000 0100 Skip next instruction if AC zeto
S7F 01110000 0000 0010 Skip next ingtruction iF E is 0
HLT 01110000 0000 0001 Halt comprter
Tnput-Outpit
INF 11111000 00000000 Inpurt charaster to AC
QuT 1111010000000000 Qutput character from AC
SKI 1111001000000000 Skip om input flag
SKO 11110001 00000000 Skap ot output fag
ION 11110000 10000000 Iiteretupt on
IOF 1100000100000 Interrupt off
Memory Referencs
AND 0000 xox xxxx xixx | 1000 xxooo xxkx AND memory woed t0 AC
ADD 0001 xnox xxxx x| 1001 xxeox xxer - ADD memoty word to AC
LDA 0010 xxco000xxkx | 101000k xxxcook - Load memary word to AC
STA 00 ook | 101 xioooooc o Store eontent of AC in mempry
BUN 0100 xxxioxk kx| 1100 xioox xox oo Branch unconditionally
BSA 0101 xooox x| 1101 ook ook Brangh and save return address
187 0110 xx0x ook | 1410 xoocoooo Ingrement ang skip if zeto

CONTROL UNIT HARDWARE (Hardwired)

* Inputs to the control unit come from IR where an instruction 1s stored.
A hardwired control 1s implemented in the example computer using:
> A 3x8 decoder to decode opcode bits 12-14 into signals DO, ..., D7;

hstruction register (IR)

5 14 133 12 1l =8
& =B 0 ther nputs
decoder
B a5 3 2 il
R .
T B
e
Ly p Contogl |[SOntol
: outpu ts
e —
P Cates

A flip-flop (I) to store the addressing mode bit in IR

A 4-bit binary

sequence counter

(SC) to count
from 0 to 15 to
achieve time
sequencing;

> A 4x16 decoder

to decode the
output of the
counter into 16
timing signals,
TO, ..., T15

Instruction register [(IE]
1514 13 12 11 -0
J ‘i B > A digital circuit
with inputs
decoder »DO0, ..., D7,
7 &5 54 3 2 1 0O TO, ..., T15, 1,
»and address bits
¢¢i¢il Crgge| in IR (11-0) -
: >to generate =
L J =" control outputs -
I = >>supplied to control
control inputs and | “MFERE
L g select signals of
N registers , bus.
I T i

15 14 = = =]

d x 1&

decocd=r

o

TT11

d-bit
EggqueEncs
oountear
=L

Figure:

o

Cther inputs
Incrament [(TEECE)
Clear (CLE]
Clochk

Control unit hardware.

i 5.5 Instruction Cycle

= A computer goes through the following
instruction cycle repeatedly:

do
1. Fetch an instruction from memory
2. Decode the instruction

3. Read the effective address from
memory if the instruction has an
indirect address

4. Execute the instruction until a HALT
instruction is encountered

Instruction and Interrupt cycles

Interrupt Cycle

Instruction cycle

Interrupts|Disabled

| Fetch, decode Execute
- Next —»I _

Instruction nstruction

HALT

Interrupt
cycle

InterruptsiEnabled

Instruction Fetch

— Instruction Fetch : TO, T1

« TO=1
—1) Place the content of PC onto the bus by making the bus
selection inputs S,5,5,=010
—2) Transfer the content of the bus to AR by enabling the LD
input of AR

- T1=1
* 1) Enable the read input memory
* 2) Place the content of memory onto the bus by making S,S,S,= 111

 3) Transfer the content of the bus to IR by enable the LD input of IR
* 4) Increment PC by enabling the INR input of PC

Mano’s Computer Figure 5-4 :

2

N
—_—
VI

Y

Address

Y

Y

Y

Y

\4

\4

Clock

Computer System Architecture, Mano, Copyright (C) 1993 Prentice-Hall, Inc.

Start
S2C «— 0

iF 0O

b ~p - DpC

1* T1

IR «— M[RAR], PC «— PC + 1

1* T2

Decode opcode in IR{12Z-14)
AR «— IR(0-11), I «— TR(15)

Y

(Register or I/0) = 1 f/ﬂhx (Memory-reference) = 0
‘\E\f'?/

(I/0) = 1 (Register) = 0 (Indirect) = 1 (Direct) = 0

\I// \i/’
‘¢ T3 ¢F T3 1¢ T3 ¢r T3
Execute Execute AR + M[AR] Nothing
/0 Register * *
instruction instruction
a™ < 0 SO «— 0 Execute
memory-reference

instraction
SC «— 0

v

Figure: Flowchart for fetch & decode phases.

i Instruction Cycle

= At T3, microoperations which take place
depend on the type of instruction. The four
different paths are symbolized as follows,

Control function

Microoperation

D7 IT3:
transfer
D7 I T3:
transfer
D7I T3:
instruction
D7IT3:
instruction

AR < M[AR], indirect memory
Nothing, direct memory
Execute a register-reference

Execute an I/O

Address transfer between PC and AR

TO: Since only AR 1s connected to the address inputs of memory,
the address of instruction 1s transferred from PC to AR.

1. Place the content of PC onto the bus by making the bus
selection inputs S2S1S0 = 010.

2. Transfer the content of the bus to’ AR by enabling the LD input

of AR (AR €PQ).
o2
Selects 51 M Bug
30
B memory unit 7
Urite Read
11 v
- AR 1
[step 2] Enalble LD Llu IllIm Elml

o B 2 s251s0 [stepﬂ]
R &RLT 010

Data transfer between Memory and IR

T1: The instruction read from memory is Selects
placed in IR. At the same time, PC 1s e
incremented to the address of the next Enable read 4096 x 16 |naareso
. . Write Read
1nstruction. 11 0

52
51 -
30—

1. Enable ‘read input’ of the memory.

| O
2. Place the content of memory onto the o o ik .
bus using the bus selection inputs b=
S2S1S0 = 111. (Note that the address gpmmeR
lines are always connected to AR, and - |
the next instruction address has been moede
already placed in AR.) o PR 1 0
3. Transfer the content of the bus to IR ki 4 —
by enabling LD input to IR ’_» > mnm

(IR €M[ARY]). o
4. Increment PC by enabling the INR 15 o
input of PC (PC €PC +1). PL_E T
Enable LD ID

Decoding at T2

T2: The operation code in IR is
decoded; the indirect bit is
transferred to |; the address
part of the instruction is
transferred to AR.

REGISTER-REFERENCE INSTRUCTIONS

» The 12 register-reference instructions are recognized by I =0 and
D7 =1 (IR(12-14) = 111). Each operation 1s designated by the
presence of 1 in one of the bits in IR(0-11). Therefore D71 T3 =r=1
1s common to all register-transfer instructions.

15 1211 0
o 1 1 1 Reglster operations
Svmbaol Control Microoperations Description

r 8C « 0 (Common to all, done in 1 cycle) Clear SC
CLA B, AC «— O Clear AC
CLE B E ¢ 0 Clear E
CMA rB, AC « AC Complement AC
CME rB, E « E Complement E
CIR B, AC « shr AC, AC(15) « E, E « AC(0) Circular right
CIL rB, AC « shl AC, AC(0) « B, E « AC(15) Circular left
INC rB, AC e AC + 1 [ncrement AC
SPA rB, If AC[15)=0 then PC « BC + 1 Skip if positive
SNA B, If AC(15)=1 then BC « BC + 1 Skip if negative
SZA rB, If AC=0 then BC « BC + 1 Skip it AC zero
SZL B, If E=0 then PC « BC + 1 Skip it E zero

HLT rB, & <« 0 (8 15 a start-stop flip-flop) Halt computer

i For example

= B7 = 007 (in hexadecimal)., In binary this is
equivalent to: 0000 0000 0111 (CIR)

= B6 = 006 (in hexadecimal)., In binary this is
equivalent to: 0000 0000 0110 (CIL)

CIR and CIL microoperations.

¢ 15 0

cir | E Hie AC

\j

15 0
cil | gl AC

i For example

= B3 = 008 (in hexadecimal)., In binary
this is equivalent to: 0000 0000 1000
(Complement E)

= B4 = 010 (Bi=bit in position i =4) in
binary is 0000 0001 0000 (skip if
pOS|t|Ve) BC « BC + 1 skips the next instruction.

current instructilon

PC "«—__:_;—‘: next instruction

5.6 Memory Reference Instructions
* Opcode (000 - 110) or the decoded output D1 (1=0, ..., 6) are used
to ;select one memory-reference operation out of 7.

Symbol CUperation Symbolic description
decoder

A ; AC « AC "~ M[AR]
ADD [, AC « AC + M[AR], E « C_,
LDA D, AT « M[AR]
STA D, M[AR] « AC
BUN D, PC « AR
BSA D, M[AR] « PC, BC « AR + 1
|SZ [M[AR] « M[AR] + 1, If M[RR] + 1 = 0O

then BPC « PC + 1

Memory Reference

i Instructions

= Since the data stored in memory cannot be
processed directly (the memory unit is not
connected to the ALU), the actual execution
in the bus system require a sequence of
microoperations.

= (Note that TO-T2 for fetch an instruction; T3
for AR € M[AR] if indirect memory
addressing.

Start
S2C «— 0

iF 0O

b ~p - DpC

1* T1

IR «— M[RAR], PC «— PC + 1

1* T2

Decode opcode in IR{12Z-14)
AR «— IR(0-11), I «— TR(15)

Y

(Register or I/0) = 1 f/ﬂhx (Memory-reference) = 0
‘\E\f'?/

(I/0) = 1 (Register) = 0 (Indirect) = 1 (Direct) = 0

\I// \i/’
‘¢ T3 ¢F T3 1¢ T3 ¢r T3
Execute Execute AR + M[AR] Nothing
/0 Register * *
instruction instruction
a™ < 0 SO «— 0 Execute
memory-reference

instraction
SC «— 0

v

Figure: Flowchart for fetch & decode phases.

Computer Registers

—Accumulator(AC) : takes input from ALU
» The ALU takes input from DR, AC and INPR :

»ADD DR to AC, AND DR to AC

—Note) Input register is not connected to the bus.
—The input register is connected only to the ALU

DR

I
LD

|
INCR CLR

ALU

o
e

AC

|
LD

INCR CLR

— |

INPR

i AND to AC

AND to AC: Logical AND operation between AC and
the memory word specified by AR.

(Note that TO-T2 for fetch an instruction; T3 for AR
< M[AR] if indirect memory addressing.

Need 2 more cycles for the AND logical operation
since only DR is connected to ALU.)

DOT4: DR < M[AR]
DOT5: AC < AC " DR, SC < 0

= SC — start counter

i ADD to AC

= ADD to AC: Arithmetic addition
operation between AC and the memory
word specified by AR.

= D1T4: DR < M[AR]
= D1T5: AC < AC + DR, SC < 0

i Load to AC

= LDA: Load to AC.

= (Need 2 cycles since AC input is not
connected to the bus.)

= D2T4: DR < M[AR]
= D2T5: AC < DR, SC < 0

i Store AC

s STA: Store AC.
= D3T4: M[AR] € AC,SC < 0

= BUN: Branch unconditionally. Transfers
the program to the instruction specified
by AR. (Note that the branch target
must be in AR beforehand.)

= D4T4: PC < AR, SC < 0

i Branch unconditionally

= BUN: Branch unconditionally. Transfers
the program to the instruction specified
by AR. (Note that the branch target
must be in AR beforehand.)

= D4T4: PC < AR, SC < 0

Branch and save return

i address

= This instructioin is useful for branching
to a position of the program called a
subprogram

= BSA: Branch and save return address. Branch
to address AR and save PC address.

= * BSA is used to implement a subroutine call.
The indirect BUN instruction at the end of the
subroutine performs the subroutine return.

Branch and save return
address

20 i BEE 135 20 1] ESA 135
BiZ = 21| HMext instruction 21 Mext instruaction
AR = 135 135 21
1386 Subroutine PC = 136 Subrocutins
1 BUL] 135 1 BUH 125

Memory, PO, and AR at tims Ty Mamzry and PC after BSA sxecuticn

Branch and save return

i address

= Note that the above microoperations
require 2 cycles.

= D5T4: M[AR] < PC,AR < AR+ 1
(increment, INR AR)

= D5T5: PC < AR, SC < 0

i Increment and skip if zero

= ISZ: Increment and skip if zero.

= Programmer usually stores a negative
number in the memory word (in two’s
complement form).

= As this negative number is repeatedly
incremented by one, it eventually reaches
zero. At that time PC is incremented by one in
order to skip the next instruction.

i Increment and skip if zero

= increment: M[AR] éM[AR] + 1, iIf (M[AR]
+1=0)thenPC<PC+1

= increment and skip if zero requires 3 cycles.
= D6T4: DR < M[AR]
=« D6T5: DR < DR + 1
= D6T6: M[AR] < DR, if DR=0 then
PC<E<PC+1,SC<0

. I. The ISZ instructions is used to implement a
oop.

Computer Instruction

3 Instruction Code Formats :
1-Register-reference instruction

—7/xxx (7800 ~ 7001):
CLA, CMA,

15 14 12 11 0

of1 1 1

Register Operation

2-Input-Output instruction

—Fxxx(F800 ~ FO040) : INP,
OUT, ION, SKI, ..=-

15 14 12 11 0

{1 1 1

3-Memory-reference instruction
Opcode =000 ~ 110
[=0 : Oxxx ~ 6xxX%, [=1: 8xXX

~Exxx

15 14 12 1 0)

I=0 : Direct,

Address

I/O Operation -<

I=1 : Indirect/| I [Opcode

Hexadscimal code
Symbol I=10 [=1 Description
Register Refirence
CLA 01111000 0000 0000 Clear AC 7800 (B,, bit)
CLE 0111 0100 0000 0000 ClearE
CMA 01110010 0000 0000 Complement AC
CME 01110001 0000 0000 Complament E
CIR 01110000 1000 0000 Cirenlate tight ACand E
CIL 01110000 0100 0000 Cirenlate left AC and E
INC 01110000 0010 0000 Ihctemment AC
SPA 01110000 0001 0000 Skip next ingtruction if AC positive
SNA 011100000000 1000 Skip next instruction if AC negative
SZA 01110000 0000 0100 Skip next instruction if AC zeto
S7F 01110000 0000 0010 Skip next ingtruction iF E is 0
HLT 01110000 0000 0001 Halt comprter
Tnput-Outpit
INF 11111000 00000000 Inpurt charaster to AC
QuT 1111010000000000 Qutput character from AC
SKI 1111001000000000 Skip om input flag
SKO 11110001 00000000 Skap ot output fag
ION 11110000 10000000 Iiteretupt on
IOF 1100000100000 Interrupt off
Memory Referencs
AND 0000 xox xxxx xixx | 1000 xxooo xxkx AND memory woed t0 AC
ADD 0001 xnox xxxx x| 1001 xxeox xxer - ADD memoty word to AC
LDA 0010 xxco000xxkx | 101000k xxxcook - Load memary word to AC
STA 00 ook | 101 xioooooc o Store eontent of AC in mempry
BUN 0100 xxxioxk kx| 1100 xioox xox oo Branch unconditionally
BSA 0101 xooox x| 1101 ook ook Brangh and save return address
187 0110 xx0x ook | 1410 xoocoooo Ingrement ang skip if zeto

i Figure 5-11

= Summary of memory-reference
Instructions

i 5.7 10 and Interrupt

= Input-Output Configuration :

» Input Register(ZNPR), Output Register(OUTR)

= These two registers communicate with a
communication interface serially and with the
AC in parallel

= Each quantity of information has eight bits of
an alphanumeric code

i IO and Interrupt

= Input Flag(FGI), Output Flag(FGO)

» FGI : set when INPR has information,
clear when INPR is empty

=« FGO : set when operation is completed,
clear when output device is active (for
example a printer is in the process of
printing)

Input-output:

—

[L0T; = p (common to all input—output instructions)
IR(i)=B;(i=6,7,8§,9,10, 11)

p: SC 10
NP pBy: ACO-T)—INPR, FGI+0
ouT Pl OUTR «—AC(0=-T), FGO <10
SKI fils % If (FGI = 1) then (PC«~PC + 1)
K0 pHg If (FGO = 1) then (PC = PC + 1)
IO p i TEN +—1

IOF pB.: [EN+0

i IO instructions

s These instructions are executed with
the clock transition associated with
timing signal T3

= For these instructions, D7=1 and I=1

= The control function is distinguished by
one of the bits in IR(6-11)

i Program Interrupt

= Program Interrupt
= Two I/O Transfer Modes
= 1) Programmed I/O
= 2) Interrupt-initiated I/O (FGI FGO)

= IEN: interrupt enable flip-flop
= R: interrupt flip-flop

T,T,T,(IEN)FGI + FGO): R < 1

Ihstruction cycle =0 0 =1 Ihterruptcycle

Fetch and decode

nstruction Store retum address

n bcation O

l M[0]l. PC

Execute
hstruction

l

Branch tb lbcation 1

EN «— O
R<—0

<
:1 PC
<

Program Interrupt

= Demonstration of the interrupt cycle :

= The memory location at address 0 is the
place for storing the return address

« Interrupt Branch to memory location 1
= Interrupt cycle IEN=0

[

Save Return
Address(PC) at 0 J

[Jump to 1(PC=1)]

Interrupt
Here

>

RT, {AR <« 0,TR <~ PC

RT, AM[AR] <~ TR.(PC < O
RT, {PC <~ PC+1/IEN <~ 0,R < 0,SC < 0

256(return address)

0

BUN 1120

Main Program

Interrupt

Service Routine

1

BUN

0

Mano's Computer: RTL

TABLE S-6 Conecrol Funcrions and Microoperarions for che Basic Compurer

Fetch = "To: AR
Ty TR = A AR]. PP + 1
Drecodde o Mo, o oo Iy w— Tecode FR(LZ—14],
AAFT — FR{O—11), £ ~—FR(1LS)
Imdirect .o B AR — MrAaR]
Imterrupt:
TaTiTa(fENWFCGT +— Fiaor): o 1
=T n: AT w0 T - P
RT - AfF[AR] =~ THFR. FPC«—0
o e T e P - 1, FE N «—0, S -0, ST =—
rAcmory-refercmnoe:
AN I Tz I IR —— A AR]
i N AT e— A ™ TR S -y
AT Iy, Tz o g T |
I, Ty AU — AT - PR o .., S =— D
LI o, T, IR — AL [AR]
i P AT -— iR R |
ST.A Fa W o AL [AR]) — . AC, S =0
5 . Ta: T = AT ST =—h
BSas ry.T.: ALAF]) — O, AR — A - 1
e S T e AR ST
57 T L2 - AfAR]
i TR - IR + 1
i AAR] — DR i i — O) them (PO =-— P + 1), HT -k
Remister-reflerernce:
Mo = r (commeaemn e nll register-refercnoe imstrectioms)
TREY = B = @, 1, 2, .__ _ 11}
T ST =—1D
L M = P AT -—— 10
CILLE L = FT i -
e VY L & [AT -— R
ChAEE i F o— F
IR o AT ——shr AC, ACLS)—E, E —_AC{D)
CIL. . AT w—shil AT, ACIH) —E, F - AC{15)
i et e gl = AT — AT 1
SFa [= If LAC{ISY = O then (PO — PO + 1)
S LA P = e If (AC{ISY) = 1) then (PO «— Po + 1)
BN [= IF (AT = O thvemn PO «—— PO -+ 1]
S i, If (£ — O) then (PO« PO 5 1)
HIL'T T = e]
Imprue-cynatgauat:
AT = o foormemaon to @all apeaot—oe ot instractions)
FR(E) — B, (i = 6, 7, &, @, 10, 11)
Pl S =— i
I™NP Fop . ATy — FNVNPR ., FGF—0O
L1 R et CRETRE =— ACT(O—T), FETCP =—
SE ol - If (FGF =— 1) them (PO =— P + 1)
S o If (Ferer = 13 them (PO =—— PO = 1]
T g s N a1
I

B

LB

