Unit 6 Part I CPU Organization

Central Processing Unit

- The part of the computer performs the bulk of data processing operations is called the central processing unit
- The CPU is made up of three major parts:
 - Register set
 - ALU
 - Control units

CPU

The **central processing unit (CPU)** of a computer is the main unit that dictates the rest of the computer organization

- 1. Register set: Stores intermediate data during the execution of instructions;
- 2. Arithmetic logic unit (ALU): Performs the required micro-operations for executing the instructions;
- 3. Control unit: supervises the transfer of information among the registers and instructs the ALU as to which operation to perform by generating control signals.

- CPU must have some working space (fast access and close to CPU)
- This space is efficiently used to store intermediate values
- The most convenient way to communicate registers is trough common bus system

Bus organization for 7 CPU registers:

•2 MUX

BUS A and BUS B

•ALU

•3 X 8 Decoder

Bus organization for 7 CPU registers:

- 2 MUX: select one of 7 register or external data input by SELA and SELB
- **BUS A and BUS B** : form the inputs to a common ALU
- ALU : OPR determine the arithmetic or logic microoperation
 - The result of the microoperation is available for external data output and also goes into the inputs of all registers
- **3 X 8 Decoder**: select the register (by SELD) that receives the information from ALU

- An operation is selected by the ALU **operation selector** (OPR).
- The result of a microoperation is directed to a destination register selected by a **decoder** (SELD).
- **Control wor**d: The 14 binary selection inputs (3 bits for SELA, 3 for SELB, 3 for SELD, and 5 for OPR)

Example 1

$R1 \leftarrow R2 + R3$

Binary selector input

 1) MUX A selector
 (SELA) : to place the content of R2 into BUS A

2) MUX B selector
(SELB) : to place the content of R3 into BUS B

• 3) ALU operation selector (OPR) : to provide the arithmetic addition R2 + R3

4) Decoder selector
 (SELD) : to transfer the content of the output bus into R1

Binary	SELA	SELB	SELD
code			
000	External input	External input	External input
001	R1 _	R1 -	R1 -
010	R2	R2	R2
011	R3	R3	R3
100	R4	R4	R4
101	R5	R5	R5
110	R6	R6	R6
111	R7	R7	R7

• Encoding of the register selection fields

• Encoding of the ALU operation field

OPR	Operation	Symbol
select	-	-
00000	Transfer A	TSFA
00001	Increment A	INCA
00010	Add $A + B$	ADD
00101	Subtract A - B	SUB
00110	Decrement A	DECA
01000	AND A and B	AND
01010	OR A and B	OR
01100	XOR A and B	XOR
01110	Complement A	COMA
10000	Shift right A	SHRA
11000	Shift left A	SHLA

Encoding of Register Selection Fields:

»SELA or SELB = 000 (External Input) : MUX selects the external data

»SELD = 000 (None) : no destination register is selected but the contents of the output bus are available in the external output

Example

(Example 2) **1. Micro-operation** $R1 \leftarrow R2 - R3$

2. Control word

Field:		SELA SELE			
SELD OPR					
Symbol:	R2		R3	R1	
SUB					
Control word:	010		011	001	
00101					