Unit 2 Part I Combinational Circuits

- Half-adder: Performs the most basic digital arithmetic operation, that is, the addition of two binary numbers.
- •The half-adder requires two outputs because the sum 1 + 1 is binary 10. The two inputs are:
- called S (for sum) and C (for carry out).

From the truth table write the Boolean function outputs for the sum S and the carry out C:

S=x`y+xy` (Exclusive OR) C=xy (AND)

(Logic diagram)

(Truth table for half-adder)					
X	У	С	S		
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		

Here is a proof of the Exclusive OR identity using truth table.

(Proof by truth table)

X	у	x′y	xy'	x'y+xy'	
0	0	0	0	0	
0	1	1	0	1	
1	0	0	1	1	
1		0	0	0	

FULL-ADDER

• To implement an arithmetic adder for multiple-bit inputs, we need to treat the carry out from the lower bit as a third input (it becomes carry in for the current bit) in addition to the two input bits at the current bit position.

Full-Adder

It adds 3-bits, it has 3-inputs and 2-outputs

We will use x, y and z for inputs and s for sum and c for carry are the two outputs. x y z c s

The truth table

X	У	Z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

S = x`y`z + x`yz` + xy`z` + xyz

<u>k-map for s</u>

y z X	00	01	11	10
0	0	1	0	1
1	1	0	1	0

Inputs	Outputs	
хуz	CS	82
0 0 0	0 0	
001	01	
010	01	
011	10	
100	01	
101	10	
110	10	
1 1 1	1 1	

$S = x \oplus y \oplus z$

K-map on C

C=yz+xz+xy

But we would like to use the previous logic gate XOR

y z x	00	01	11	10
0	0	0	1	0
1	0	1	1	1

We can write
$$C = x'yz + xy'z + xyz'$$

= $z(x'y + xy') + xy(z+z')$
= $z(x \oplus y) + xy$ ($x \oplus y$) is already used for the sum S

Full Adder

Putting them together we get:

 $S = x \oplus y \oplus z$ $C = z (x \oplus y) + xy$

The logic diagram for the full adder