Unit 2 Part I Combinational Circuits

HALF-ADDER

- Half-adder: Performs the most basic digital arithmetic operation, that is, the addition of two binary numbers.
-The half-adder requires two outputs because the sum $1+1$ is binary 10. The two inputs are:
called S (for sum) and C (for carry out).

From the truth table write the Boolean function outputs for the sum S and the carry out C :
$S=x ` y+x y$ (Exclusive OR)
$\mathrm{C}=\mathrm{xy}$ (AND)
(Logic diagram)

(Truth table for half-adder)			
x	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Here is a proof of the Exclusive OR identity using truth table.

(Proof by truth table)

x	y	$\mathrm{x}^{\prime} \mathrm{y}$	xy	$\mathrm{x}^{\prime} \mathrm{y}+\mathrm{xy}$
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

FULL-ADDER

- To implement an arithmetic adder for multiple-bit inputs, we need to treat the carry out from the lower bit as a third input (it becomes carry in for the current bit) in addition to the two input bits at the current bit position.

Full- Adder

It adds 3-bits, it has 3-inputs and 2-outputs

We will use x, y and z for inputs and s for sum and c for carry are the tw outputs.

The truth table

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{c}	\mathbf{s}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Full Adder

$$
S=x^{`} y^{`} z+x^{`} y z^{`}+x^{`} z^{`}+x y z
$$

k-map for s

y y	00	01	11	10
0	0	1	0	1
1	1	0	1	0

Full Adder

Inputs $\times \mathrm{y} \mathrm{z}$	Outputs	
000	0 O	
001	01	
010	01	$\mathrm{S}=\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{z}$
011	10	
100	01	
101	10	
110	10	
111	11	

K-map on C

$\mathrm{C}=\mathrm{yz}+\mathrm{xz}+\mathrm{xy}$
But we would like to use the previous logic gate XOR

$\mathrm{y} z$ x	00	01	11	10
0	0	0	1	0
1	0	1	1	1

K-map on C

We can write $C=x^{`} y z+x y ` z+x y z+x y z `$

$$
=z\left(x^{\prime} y+x y^{\prime}\right)+x y\left(z^{+}+z^{\prime}\right)
$$

$$
=z(x \oplus y)+x y \quad(x \oplus y) \text { is already used for the sum } S
$$

Full Adder

Putting them together we get:

$$
\begin{aligned}
& \mathrm{S}=\mathrm{x} \oplus \mathrm{y} \oplus \mathrm{z} \\
& \mathrm{C}=\mathrm{z}(\mathrm{x} \oplus \mathrm{y})+\mathrm{xy}
\end{aligned}
$$

The logic diagram for the full adder

