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1. Sets: 

~ Natural Numbers N = {1,2,3,···} 

~ Integers Numbers Z = {··· ,−3,−2,−1,0,1,2,3,···} = Z− ∪ {0} ∪ Z+ 

~ Rational Numbers  are integers numbers and b 6= 0} 

√  

~ Irrational Numbers I: Such as 2 and π are numbers which are not rational. 

~ Real Numbers R: The set of rational and irrational numbers (R = Q ∪ I). 

√ 

~ Complex Numbers C = {x + yi : x,y are real numbers and i = −1} Clearly, 

N ⊆ Z ⊆ Q ⊆ R ⊆ C 

2. Operations With Real Numbers: 

If a,b and c are real numbers, then: 

1) a + b ∈ R and a × b ∈ R (Closure law) 

2) a + b = b + a (Commutative law of addition) 

3) a × b = b × a (Commutative law of multiplication) 

4) a + (b + c) = (a + b) + c (associative law of addition) 

5) a × (b × c) = (a × b) × c (associative law of multiplication) 

6) a × (b + c) = a × b + a × c (distributive law) 
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7) a + 0 = 0 + a = a (0 is called the identity with respect to addition) a × 1 = 1 × a = a 

(1 is called the identity with respect to multiplication) 

8) For any a there is a number x ∈ R such that x + a = a + x = 0, x is called the 

inverse of a with respect to addition and is denoted by −a. 

9) For any a 6= 0 there is a number x ∈ R such that x × a = a × x = 1, x is called 

the inverse of a with respect to multiplication and is denoted by a−1 or . 

3. Types of Intervals: 

Interval Notation Set definition Name Region on the Real Number Line 

(a,b) {x : a < x < b} Open 
a 

 
b 

 

[a,b] {x : a ≤ x ≤ b} Closed 
a 

 
b 

 

[a,b) {x : a ≤ x < b} Half Open 
a 

 
b 

 

(a,b] {x : a < x ≤ b} Half Open 
a 

 
b 

 

(a,∞) {x : x > a} Open 
a 

  

[a,∞) {x : x ≥ a} Closed 
a 

  

(−∞,b) {x : x < b} Open 
 

b 
 

(−∞,b] {x : x ≤ b} Closed 
 

b 
 

(−∞,∞) 
R 

Open and 

Closed   
4. Inequalities: 
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If a − b is a nonnegative number, we say that a is greater than or equal to b or b is less 

than or equal to a, and write, respectively a ≥ b or b ≤ a. If there is no possibility that a 

= b, we write a > b or b < a. 

Theorem (4.1): 

If a,b,c and d are any real numbers, then: 

1) If a < b and b < c, then a < c 

e.g., 4 < 5 and 5 < 7 ⇒ 4 < 7 

2) If a < b, then a ± c < b ± c 

e.g., 10 < 13 ⇒ 10 + 3 < 13 + 3 and 10 − 3 < 13 − 3 

 when c > 0 3) If a < b, then 

e.g., 10 < 20 ⇒ 10 × 3 < 20 × 3 ⇒ 30 < 60 

4) If a < b, then  when c < 0 

e.g., 10 < 20 ⇒ 10 × −2 > 20 × −2 ⇒ −20 > −40 

 

 u1u u1u 

5) If a < b, then > 

 a b 

e.g., 3  

6) If a < b and c < d, then a + c < b + d e.g., 3 < 5 and 6 < 9 ⇒ 3 + 6 < 5 + 9 
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Example (4.1): Find the solution set of the following inequalities. 

1) 3 + 2x < 7 

Solution: 

 

∴ The solution = {x : x < 2} = (−∞,2) 

2) 2 − 3x < 4 + 2x 

Solution: 

2 − Z3Zx + Z3Zx < 4 + 2x + 3x (adding to both sides +3x) 

 ⇒ 2 < 4 + 5x ⇒ 2 − 4 < S4 + 5S x − S4 (S adding to both sides −4) 

 (dividing both sides by 5) 

∴ The solution =  

3) 2 < 3x − 1 ≤ 11 

Solution: 

 

∴ The solution = {x : 1 < x ≤ 4} = (1,4] 

4) Solution: 

x may be positive or negative. 

Case 1: If x > 0 
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∴ The solution = {x : x > 8} = (8,∞) 

Case 2: If x < 0 

∴ The solution = {x : x < 0} = (−∞,0) 

∴ The general solution is (−∞,0) ∪ (8,∞) 

5)  

Solution: 

Case 1: If x + 3 > 0 ⇒ x > −3 x − 7 XX+ 3)XX > 2(x + 3) ⇒ x − 7 > 2x + 6 ⇒ x − 2x 

> 6 + 7 ⇒ −x > 13 

⇒ XX+ 3XX(x x 

 ⇒ x < −13 this is false.  

Case 2: If x + 3 < 0 ⇒ x < −3 x − 7 XX+ 3)XX < 2(x + 3) ⇒ x − 7 < 2x + 6 ⇒ x − 2x 

< 6 + 7 ⇒ −x < 13 

⇒ XX+ 3XX(x x 

 ⇒ x > −13 .  

∴ The solution is = {x : −13 < x < −3} = (−13,−3) 

∴ The general solution is = {x : −13 < x < −3} = (−13,−3) 

Exercises (4): Solve the following inequalities: 

⇒ 
2 

 x 
×  x< 

1 

4 
× x ⇒ 2 < 

x 

4 
⇒ 2 × 4 < 

x 
  4 
×   4 ⇒ 8 < x 

⇒ 
2 

 x 
×  x> 

1 

4 
× x ⇒ 2 > 

x 

4 
⇒ 2 × 4 > 

x 
  4 
×   4 ⇒ 8 x > 
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1)  2)  3) x2 − 6x + 5 > 0 

4) (x − 1)2(x + 4) < 0 5) 5x − 2x2 > 0 

5. Absolute Value: 

Definition (5.1): If x and y any real numbers, then: 

  

 

 x 

Definition: If x and y any real numbers, then:|x| = 0 

 −x 

if 

if 

if 

x > 0 

x = 0 

x < 0 

Properties: 

1) | − x| = |x| 

2) |xy| = |x||y| 

3) 

4) 

5) |x + y| ≤ |x| + |y| 

6) |x − y| ≥ |x| − |y| 

7) −|a| ≤ a ≤ |a| 

8) If |x| ≤ a , then −a ≤ x ≤ a 

9) If |x| ≥ a , then x ≤ −a or x ≥ a 
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Example (5.1): 

1) |4 − 8| = | − 4| = 4 

2) |4| + | − 3| = 4 + 3 = 7 

3) |4 − 8| = |4 + (−8)| ≤ |4| + | − 8| 

4) |4 + 8| = |4 − (−8)| ≥ |4| − | − 8| 

hgfg 

Example (5.2): Solve  

Solution: 

2 (Since x2 + 1 > 0) 

 

⇒ |x|2 − 2|x| + 1 > 0 (Since x2 = |x|2) 

⇒ (|x| − 1)2 > 0 , |x| 6= 1 

∴ The solution is the set of real number except x = 1 , x = −1 and x = 0 ∴ The solution is 

= (−∞,−1) ∪ (−1,0) ∪ (0,1) ∪ (1,∞) 

Example (5.3): Solve |x + 3| ≤ 5 

Solution: 

|x + 3| ≤ 5 if and only if −5 ≤ x + 3 ≤ 5 

⇒ −5 − 3 ≤ xH+3H
H−H3 ≤ 5 − 3 ⇒ −8 ≤ x ≤ 2 

∴ The solution is = {x : −8 ≤ x ≤ 2} = [−8,2] 

Exercises (5): Solve the following inequalities: 
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1) |2x − 3| < |x + 2| 

2) |2x + 1| > 2 

3) |5 − 3x| < 2 

6. Functions: 

Definition (6.1): A relation f : X −→ Y is called function if and only if for each element 

x ∈ X, there exist a unique element y ∈ Y such that y = f(x). 

~ The variable x in a function y = f(x) is called the independent variable of the function 

f. The variable y whose value dependent on x, is called dependent variable of the 

function f. 

~ If y = f(x), then the set of all possible inputs (x − values) is called the domain of f and 

denoted by Df or Dom(f). 

And the set of outputs (y−values) that result when x varies over the domain is called 

the range of f and denoted by Rf or Ran(f). 

Example (6.1): Find the domain and range of the following functions: 

1) f(x) = x − 2 2) f(x) = x2 − 4 

4) f(x) = |x| 5)  

Solution: 

1) Df = R and Rf 

= R 

2) Df = R 

 
Let y = x2 − 4 

⇒ x2 = y + 4 
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⇒ x = ∓py + 4 

If y + 4 ≥ 0 ⇒ y ≥ −4 

∴ Rf = [−4,∞) 

3) x − 2 ≥ 0 ⇒ x ≥ 2 

∴ Df = [2,∞) and Rf = [0,∞) 

4) Df = R and Rf = [0,∞) 

5) x + 2 = 0 ⇒ x = −2 

∴ Df = (−∞,−2) ∪ (−2,∞) x2 − 4 (x − 

2)(XxX+ 2)XX 

√  

3) f(x) = x − 2 

6) 

 

 Since f(x) = x + 2 = XxX+ 2XX = x − 2 for x 6= −2 

⇒ f(x) = x − 2 

⇒ y = x − 2 ⇒ y = −2 − 2 = −4 

∴ Rf = (−∞,−4) ∪ (−4,∞) 

6) Df = (−∞,2) ∪ (2,3) ∪ (3,∞) 

Let
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If 1 +  

Case 1: If y > 0 

 ⇒ 4 ≥ −y ⇒ y ≥ −4 ⇒ (0,∞)  

Case 2: If y < 0 

 ⇒ 4 ≤ −y ⇒ y ≤ −4 ⇒ (−∞,−4]  

∴ Rf = (−∞,−4] ∪ (0,∞) 

Example (6.2): Find the domain of the following functions: 

1)  2)  3)  

Solution: 

1) x2 − 4x − 12 = 0 ⇒ (x − 6)(x + 2) = 0 ⇒ x = 6,x = −2 

∴ Df = (−∞,−2) ∪ (−2,6) ∪ (6,∞) 

2) x − 1 ≥ 0 ⇒ x ≥ 1 

∴ Df = [1,∞) 

3) x2 − 4 > 0 ⇒ x2 > 4 this is true if x < −2 or x > 2 

∴ Df = (−∞,−2) ∪ (2,∞) 
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l 

Exercises (6.1): Find Df and Rf of the following functions:  

√  

1) f(x) = −x2 + 4 2) f(x) = x 

4) f(x) = cos2(x) 

Exercises (6.2): Find Df of the following functions: 

3) f(x) = sin(x) 

 

  3 − x if x ≤ 1 2) 

1) f(x) = 

  5x − 3 if x > 1 

Definition (6.2): Let f(x) be a function with domain Df and g(x) be a function with 

domain Dg and define: fghfghcfggcvgvvvkguygyD = Df ∩ Dg, then: 

1) (f + g)(x) = f(x) + g(x) with domain D 

2) (f − g)(x) = f(x) − g(x) with domain D 

3) (f.g)(x) = f(x).g(x) with domain D 

4) (f/g)(x) = f(x)/g(x) with domain D and g(x) 6= 0 

√  

Example (6.3): Let f(x) = 1 + x − 2 and g(x) = x − 3, find (f + g)(x) , (f − g)(x) 

, (f.g)(x) , (f/g)(x) and state the domain of f + g , f − g , f.g , f/g. 

Solution: 

 √  √  

1) (f + g)(x) = f(x) + g(x) = 1 + x − 2 + x − 3 = x − 2 + x − 2 

 √  √  

2) (f − g)(x) = f(x) − g(x) = 1 + x − 2 − x + 3 = 4 − x + x − 2 
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 √  √  

3) (f.g)(x) = f(x).g(x) = (1 + x − 2)(x − 3) = x − 3 + (x − 3) x − 2 

4)  

∴ Dg = (−∞,∞) 

∴ D = Df ∩ Dg = [2,∞) ∩ (−∞,∞) = [2,∞) 

∴ Dom(f + g,f − g,f.g) = D = [2,∞) 

Dom(f/g) = [2,3) ∪ (3,∞) 

 √  √  

Exercises (6.3): Let f(x) = 2 x − 1 and g(x) = x − 1 find the domain of f + g,f − g, f.g, and 

f/g. 

7. Composition of Function: 

Definition (7.1): The composition function (f ◦ g) defined by (f ◦ g)(x) = f (g(x)) the 

notation (f ◦ g) is read (f follows g or the composition of f and g). 

f : X −→ Y , g : Y −→ Z ⇒ f ◦ g : X −→ Z 

Example (7.1): Let f(x) = 2x + 1 and g(x) = x2 − x find (f ◦ g)(x) and (g ◦ f)(x). 

Solution: 

1)  
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2) (g ◦ f)(x) = g (f(x)) = g (2x + 1) = (2x + 1)2 − (2x + 1) 

kjgf 

 

Example (7.2): Let f(x) = √x − 3 and g(x) = px2 + 3 find (f ◦ g)(x) and (g ◦ f)(x). 

Solution: 

1) 

2) 

Exercises (7): Find (f ◦ g)(x) and (g ◦ f)(x) for the following: 

√ 
2 

1) f(x) = x , g(x) = 1 − x 

2) 

3) 

8. Graph of a Function: 

A function f establishes a set of ordered pairs (x,y) of real number. The plot of these 

pairs (x,f(x)) in a coordinate system is the graph of f. hu 
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Example (8.1): Sketch a graph of the function f(x) = 

x2 

Solution: 

Df = R 

Make a table 

values of x 

from the 

domain. 

Example 

(8.2): Sketch a graph of the 

√  

function f(x) = 4 − x 

Solution: 

4 − x ≥ 0 ⇒ 4 ≥ x ⇒ Df = (−∞,4] 

Make a table 

values of x from 

the domain. 

j 

Example (8.3): Sketch a graph of the 

x -4 
-

3 

-

2 

-

1 
0 1 2 3 4 

y 16 9 4 1 0 1 4 9 16 

x 4 3.75 3 2 0 -2 

y 0 0.5 1 1.4 2 2.4 

 

function f(x) = x2 

 1 

if 

if 

0 ≤ x ≤ 1 

x > 1 

− 6 − 4 − 2 2 4 6 

2 

4 

6 

8 

10 

12 

14 

16 ( − 4 , 16) 

( − 3 , 9) 

( − 2 , 4) 

( − 1 , 1) 

(0 , 0) 

(1 , 1) 

(2 , 4) 

(3 , 9) 

(4 , 16) y 

x 

− 2 − 1 1 2 3 4 5 

− 1 

1 

2 

3 

(4 , 0) 
(3 . 75 , 0 . 5) 

(3 , 1) 
(2 , 1 . 4) 

(0 , 2) 

( − 2 , 2 . 4) 

y 

x 
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  if x < 0 

Solution: 

Df = R 

Make a table values of x from the domain. 

Remark (8.1): 

x 
-

4 

-

3 

-

2 

-

1 
0 0.5 1 2 3 4 

y 4 3 2 1 0 0.25 1 1 1 1 

− 4 − 3 − 2 − 1 1 2 3 4 

− 1 

1 

2 

3 

4 ( − 4 , 4) 

( − 3 , 3) 

( − 2 , 2) 

( − 1 , 1) 

(0 , 0) 
(0 . 5 , 0 . 25) 

(1 , 1) (2 , 1) (3 , 1) (4 , 1) 

y 

x 
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9. Even Functions and Odd Functions: 

Definition (9.1): A function y = f(x) is an even function of x if f(−x) = f(x) for every x in 

the function’s domain. It is odd function of x if f(−x) = −f(x) for every x in the function’s 

domain. 

Example (9.1): f(x) = x2 is even function since f(−x) = (−x)2 = x2 = f(x) 

Example (9.1): f(x) = x3 is odd function since f(−x) = (−x)3 = −x3 = −f(x) 

10. Test of Symmetric: 
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To test for various kinds of symmetry we state the following rules: 

i. about x − axis replace y by −y (−y −→ y) in its equation produces an equivalent 

equation. 

ii. about y − axis replace x by −x (−x −→ x) in its equation produces an equivalent 

equation. 

iii. about the origin point 

replace x by −x and y by −y (−x −→ x ∧ −y −→ y) in its equation produces an 

equivalent equation. 

Definition (10.1): A line y = b is a horizontal asymptote of the graph of the relation if 

the distance between the curve and the line y = b tends to zero as the curve continuous 

upwards beyond all bound. 

Definition (10.2): A line x = a is a vertical asymptote of the graph of the relation if the 

distance between the curve and the line x = a tends to zero as the curve continuous 

upwards beyond all bound. 

~ To test a horizontal asymptote, we flow the following: 

1) We solve x in terms of y. 

2) If x is given of form  and find all those values of y for which t(y) = 0 and r(y) 

6= 0 then the values of y which satisfy t(y) = 0 are horizontal asymptotes of the 

graph. 

~ To test a vertical asymptote, we flow the following: 
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1) We solve y in terms of x. 

2) If y is given of form  and find all those values of x for which h(x) = 0 and 

g(x) 6= 0 then the values of x which satisfy h(x) = 0 are vertical asymptotes of the 

graph. 

Example (10.1): Sketch a graph of the following functions: 

1) (x2 − 4)y2 = 1 yyykjghjgfvhfvgg2) x2y = x − 3 (H.W) 

Solution 1: Dom = (−∞,−2) ∪ (2,∞) hh Test 
of Symmetric: 

i. about x − axis (−y −→ y) ⇒ (x2 − 4)(−y)2 

= 1 ⇒ (x2 − 4)y2 = 1 ∴ Symmetric about 

x − axis. 

ii. about y − axis (−x −→ x) ⇒ ((−x)2 − 

4)y2 = 1 ⇒ (x2 − 4)y2 = 1 ∴ Symmetric 

about y − axis. 

iii. From (i) and (ii) we get symmetric 

about the origin point. 

Test of Asymptotes: 

1)  

⇒ y = 0 is a horizontal asymptote. 

2)  

∴ x = 2 and x = −2 are vertical asymptotes. 

− 4 − 3 − 2 − 1 1 2 3 4 

− 2 

− 1 

1 

2 
x =2 x = − 2 

y =0 

(2 . 1 , 1 . 5) 
(2 . 25 , 0 . 97) 

(2 . 5 , 0 . 66) 
(3 , 0 . 44) (4 , 0 . 28) 
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x -4 -3 -2.5 -2.25 -2.1 2.1 2.25 2.5 3 4 

y ±0.28 ±0.44 ±0.66 ±0.97 ±1.5 ±1.5 ±0.97 ±0.66 ±0.44 ±0.28 

11. Greatest Integer Function: 

 ... 

 

−−12 

f(x) = [x] = 0 

 

12... 

Df = R and Rf = Z 

... 

if 

if 

if 

if 

if 

... 

... 

−2 ≤ 

x < 

−1 

−1 

≤ x 

< 0 

0 ≤ 

x 

< 

1 

1 ≤ 

x 

< 

2 

2 ≤ 

x 

< 

3 

... 

For Example: 

f(0.5) = [0.5] = 0 jfyghvghvghvghf(1.9) = [1.9] = 1 f(2.4) = [2.4] 

= 2jfyghvghvghvghf(−1.2) = [−1.2] = −2 ohji 
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12. Trigonometric Functions: 

1) 

2) 

3)  

4) cot(

 

5)  

6)  

7)  

8)  cot2(θ) + 1 = csc2(θ) 

− 6 − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 

− 5 

− 4 

− 3 

− 2 

− 1 

1 

2 

3 

4 

5 

x 

y 

θ 

y r 

x 
θ 

r 

x 

y 
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9) kjhjk 

Definition (12.1): A function f(x) is periodic with period ρ > 0 if f(x + ρ) = f(x) for every 

value of x. 

Example (12.1): f(x) = sin(x) , f(x) = cos(x) are periodic function such that ρ = 2π i.e : 

sin(θ) = sin(θ + 2π) 

i.e : cos(θ) = cos(θ + 2π) 

In general: 

sin(θ) = sin(θ + 2nπ)sami sami, n = ∓1,∓2,∓3,··· cos(θ) = 

cos(θ + 2nπ)sami sami, n = ∓1,∓2,∓3,··· Remark (12.1): 

1) sin(−θ) = −sin(θ) odd function. 

2) cos(−θ) = cos(θ) even function. 

3) tan(−θ) = −tan(θ) odd function. 

4) cot(−θ) = −cot(θ) odd function. 

5) sec(−θ) = sec(θ) even function. 

6) csc(−θ) = −csc(θ) odd function. 

Properties of Trigonometric Functions: 

1) 
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2) 

3) sin(x ∓ y) = sin(x)cos(y) ∓ sin(y)cos(x) 

4) cos(x ∓ y) = cos(x)cos(y) ± sin(x)sin(y) 

5) sin(2x) = 2sin(x)cos(x) 

6) cos(2x) = cos2(x) − sin2(x) 

 

 

Example (12.2): Prove that  

Proof: 

X
X

XθX) 

 cos(θ) cos( 

 

Example (12.3): Prove that 

Proof: 
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2cot(x) Example 

(12.4): Solve 1 +  cot2(x) 

Solution: 

 

Exercises (12): Prove that 

1) 

2) 

 tan(θ) − cot(θ) 2 2 

3) = sec (θ) − csc (θ) 

4) 

5) ighkj Definition (12.2): If 

the functions f and g satisfy the 

two conditions: 

i. g(f(x)) = x for every x in the domain of f. 
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ii. f(g(y)) = y for every y in the domain of g. then we call f an inverse function 

of g and g an inverse function for f. 

13. Inverse of Trigonometric Functions: 

1) If y = sin(x) ⇒ x = sin−1(y) where  

2) If y = cos(x) ⇒ x = cos−1(y) where 0 ≤ x ≤ π , −1 ≤ y ≤ 1 

3) If y = tan(x) ⇒ x = tan−1(y) where  

4) If y = cot(x) ⇒ x = cot−1(y) where 0 < x < π , ∀y ∈ R 

5) If y = sec(x) ⇒ x = sec−1(y) where 0  

6) If y = csc(x) ⇒ x = csc−1(y) where  

Remark (13.1): 

Remark:  

Example (13.1): sin(90) = 1 ⇒ sin−1(sin(90)) = sin−1(1) ⇒ sin−1(1) = 90 

Example (13.2): Find the exact values of sin  

Solution: 

Let  

Example (13.3): Find the exact values of sin  

Solution: 

Let  
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Lemma (13.1): 

sami mezal  

Solution: 

Let  

 

Example (13.4): Prove that sin 

Proof: 

 

Let  

 

14. Exponential Functions: 

A function of the form f(x) = bx, where b > 0 and b 6= 1, is called an exponential function 

with base b. 

~ Df = R and Rf = (0,∞) 

Example (14.1):  

Properties of Exponential Functions: 

1) ax × ay = ax+y 

2)  

3) (ax)y = axy 
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4) 

5) 

6) 

7) a0 = 1 

8)  

9)  

Remark (14.1): 

The function f(x) = ex is called the natural exponential function, such that e = 2.7 

15. Logarithmic Functions: 

Is inverse of the exponential functions, y = bx is equivalent to x = logb y if y > 0 and x is 

any real number. 

~ b is called the base of the logarithmic. 

~ If b = 10 ⇒ x = logy common logarithmic. 

~ If b = e ⇒ x = loge y = ln(y) natural logarithmic. 

~ Domain of logarithmic function is (0,∞) and it is range is R. 

Properties of Logarithmic Functions: 
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If b > 0 , b 6= 1 , a > 0 , c > 0 and r is any real number, then 

1) 

2) 

3) 

4) 

5) 

6) logb x is undefine for x < 0 

7) logb b = 1 

8) ln(ex) = x for every x 

9) eln(x) = x 

 

11) logb bx = x for every x 

Example (15.1): Find log Solution: 
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Example (15.2): Find  

Solution: 

 

 

Example (15.3): Find x such that 

1) logx = 2 5) (x)log(x) = 100x (H.W) 

2) ln(x + 1) = 5 

3) 5x = 7 

4)  

Solution: 

1)  

2) ln(x + 1) = 5 ⇒ eln(x+1) = e5 ⇒ x + 1 = e5 ⇒ x = e5 − 1 

3)  

16. Hyperbolic Functions: 
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1)  where Df = R , Rf = R 

2)  where Df = R , Rf = [1,∞) 

2 

3)  where Df = R , Rf = (−1,1) 

 x −x 

4) coth(where Df = R\{0} , Rf = R\(−1,1) 

5)  where Df = R , Rf = (0,1] 

6)  where Df = R\{0} , Rf = R\{0} 

7) cosh2(x) − sinh2(x) = 1 Proof: 

8)  

9) coth2(x) − 1 = csch2(x) 

Remark (16.1): 

1) ) odd function. 

2) ) even function. 

3) tanh(−x) = −tanh(x) odd function. 

4) coth(−x) = −coth(x) odd function. 
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5) sech(−x) = sech(x) even function. 

6) csch(−x) = −csch(x) odd function. 

Properties of Hyperbolic Function: 

1) sinh(x ∓ y) = sinh(x)cosh(y) ∓ sinh(y)cosh(x) 

2) 

3) 

4) sinh(2x) = 2sinh(x)cosh(x) 

5) cosh(2x) = sinh2(x) + cosh2(x) cos(xcor = 2sinh2(x) + 1 

cos(xcor = 2cosh2(x) − 1 

6) 

7) 

Example (16.1): Let cosh(x) = 5 , x > 0 , find sinh(x) , tanh(x) , coth(x) , sech(x) and csch(x) 

Solution: 

√  

∵ cosh2(x) − sinh2(x) = 1 ⇒ 25 − sinh2(x) = 1 ⇒ sinh2(x) = 25 − 1 ⇒ sinh(x) = 24 

 x) =  = √  

 sinh(x) 24 

 sa,sa  
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Example (16.2): Prove that 

1) cosh(x) + sinh(x) = ex 

2) cosh(x) − sinh(x) = e−x (H.W) Proof: 

 

Example (16.3): Prove that tanh(  

Proof: 

 

 

Example (16.4): Prove that 

1)  

2tanh(x) 

2) tanh(2x) = 2 sami(H.W) 

1 + tanh (x) 

Proof: 
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17. Inverse of Hyperbolic Functions: 

1) If y = sinh(x) ⇒ x = sinh−1(y) where Df = R , Rf = R 

2) If y = cosh(x) ⇒ x = cosh−1(y) where Df = [1,∞) , Rf = [0,∞) 

3) If y = tanh(x) ⇒ x = tanh−1(y) where Df = (−1,1) , Rf = R 

4) If y = coth(x) ⇒ x = coth−1(y) where Df = R\[−1,2] , Rf = R\{0} 

5) If y = sech(x) ⇒ x = sech−1(y) where Df = (0,1] , Rf = R 

6) If y = csch(x) ⇒ x = csch−1(y) where Df = R\{0} , Rf = R\{0} Relations Between 

Functions: 

1) 

2) 

3)  
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4) coth  

5)  

6)  

Proof: 

1) Let  

 

since ey > 0 ⇒ ey = x + px2 + 1 ⇒ ln(ey) = ln(x + px2 + 1) 

3) Let

 

 
18. Limits 

If the values of a function f(x) approach the value L as x approaches c, we say f has limit L 

as x approaches c and we write lim  

4 
Example (18.1): Find lim x→−2 x2 
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x -2.1 -2.01 -2.001 -2.0001 ··· 
-

2 
··· -1.999 -1.99 -1.9 

f(x) 0.90702 0.99007 0.99900 0.99990 ··· 1 ··· 1.0010 1.0100 1.1080 

ssidesamisaii 

Theorem (18.1): 

If lim g(x) = B, then 

1) lim(f(x) ± g(x)) = lim f(x) ± lim g(x) = A ± B x→a x→a x→a 

2) lim(f(x) × g(x)) = lim f(x) × lim g(x) = A × B x→a x→a x→a 

3)  

4) lim kf(x) = k lim f(x) = kA , k is constant x→a x→a 

5)  , where k is constant 

6) 

7) 

8)is even 

Example (18.2): Find lim(x2 − 4x + 3) 
x→5 
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Solution: 

 

Example (18.3): Find lim 

Solution: 

 

Example (18.4): Find lim 
x→5 

Solution: 

 

Exercises (18): Find the following limits: 

1)2)3) 

4)5)6) 

18.1 Right-Hand and Left-Hand Limits: 

Let f(x) be a function then the right-hand limit defined as lim f(x) (the limit of f(x) 
x→a+ 

as x approaches a from the right). and the left-hand limit defined as lim f(x) (the 

x→a− limit of f(x) as x approaches a from the left). 

Remark (18.1): 

if and only if lim f(x) = L = lim f(x) 
 x→a− x→a+ 
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Example (18.5): Find lim[x] 

x→3 Solution: lim [x] = 2 

and lim [x] = 3 ⇒ lim [x] 6= lim [x] x→3− x→3+

 x→3− x→3+ 

∴ the limit dose not exists. 

 if x ≤ 1 

Example (18.6): Iffind lim f(x) 

  2 + x2 if x > 1 x→1 

Solution: 

lim f(x) = lim (4 − x2) = 4 − 1 = 3 
x→1− x→1− 

lim f(x) = lim (2 + x2) = 2 + 1 = 3 
x→1+ x→1+ 

∵ lim− f(x) = lim+ f(x) = 3 ⇒ lim f(x) = 3 x→1 x→1

 x→1 

Theorem (18.2): 

Theorem:  

Example (18.7): Find lim 

Solution: 

 

Example (18.8): Find lim 

Solution: 
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Exercises (18.1): Find the following limits: 

1)  2) lim cot(x) 3) lim 4)  5) 

lim 6) lim 

Theorem (18.3): 

1) 

2) 

3)any constant 

4) 

5) 

6)any constant 

7)  

Remark (18.2): 

Remark:  



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j38 

Example (18.9): Find the following limits 

1) lim 2) lim 

Solution: 

1) 

2) 

e2x − e−3x + 1 − 1 

lim = 2 × 1 + 3 × 1 = 5 x→0 x 

Exercises (18.2): Find the following limits: 

1) lim 2) lim 3) lim 4)  lim 

18.2 Limits at Infinity 

~ We say that lim f(x) = L if for any positive number  we can find a positive numx→+∞ 

ber N such that  for all x > N. 

~ We say that lim if for any positive number  we can find a positive num- 

ber N such that  for all x < −N. 

Example (18.10): Prove that lim 

Solution: 
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Let  

 

Theorem (18.4): 

1) = 0 2) lim 

1)2) lim xn =  x→−∞ 

  +∞ if n = 2,4,6,··· 

x2 

Example (18.11): Find lim  

x→−∞ 2x2 + 1 

Solution: 

 

Example (18.12): Find lim 

Solution: 

 

Exercises (18.3): Find the following limits: 

Theorem (18.5): 
 

  

  −∞ if n = 1,3,5,··· 



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j40 

1) 2) 3)  

4)5) 

kjg 

Theorem (18.6): If g(x) ≤ f(x) ≤ h(x) for all x such that lim g(x) = lim h(x) = L, where L 

is constant x→∞ x→∞ 

then lim  

Example (18.13): Prove that lim  

Proof: 

Since  

= 0 and lim  

 
Example (18.14): Find limsami mezal 

(H.W) x→∞ 

Example (18.15): Find lim 

Solution: 

 

Example (18.16): Find lim  

Solution: 

Let  , at x → ∞ then y → 0 
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19. Continuity 

Definition (19.1): A function f is said to be continuous at x = c provided the 

following conditions are satisfied: 

i. f(c) is defined 

ii. ) exists 

iii.  

Example (19.1): Determine whether the following functions are continuous or not at 

x = 2. 

 if x 6= 2 

1)2) 

  3 if x = 2 

 if x 6= 2 

3) 

  4 if x = 2 

Solution: 

1)  not defined 

∴ f(x) is discontinuous 

2) jk 

i. g(2) = 3 

ii. = 4 exists 

iii.  



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j42 

∴ g(x) is discontinuous 

3) jk 

i. h(2) = 4 

ii. = 4 exist 

iii.  

∴ h(x) is continuous 

Theorem (19.1): 

Every polynomial functions are continuous. 

Theorem (19.2): 

A rational functions are continuous at every number where the denominator is non 

zero. 

Theorem (19.3): 

If the functions f and g are continuous at c, then: 

1) f ∓ g is continuous at c 

2) f.g is continuous at c 

3) f/g is continuous at c if g(c) 6= 0 

Example (19.2): Show that whether the function  continuous or 

not? Solution: 

x2 − 5x + 6 = 0 ⇒ (x − 3)(x − 2) = 0 ⇒ x = 3, x = 2 

∴ f(x) continuous at every points except x = 3 and x = 2 

Exercises (19): Show that whether the following functions are continuous or not? 
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  x2 + 2x + 1 if x ≥ 1 

1) g(x) = |x| at x = 0 2) f(x) = at x = 1 

  3x + 1 if x < 1 

Theorem (19.4): 

The functions sin(x) and cos(x) are continuous functions. 

Theorem (19.5): 

i. If the function g(x) is continuous at c, and f(x) continuous at g(c), then f ◦ g is 

continuous at c. 

ii. If the function g is continuous everywhere and the function f is continuous 

everywhere, then the composition f ◦ g is continuous everywhere. 

Example (19.3): Show that the function  is continuous at every 

value of x. 

Solution: f(x) = x2 and

 

 and g2(x) = sin(x) 

∵ f(x) is continuous (by Theorem (19.1)) Since 

g1(x) is continuous (by Theorem (19.2)) and 

                                              

1 ) y = x2 + 2x + 1 2) y = px2 + 3 

Solution: 1 
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g2(x) is continuous (by Theorem (19.4)) ∴ g(x) 

is continuous (by Theorem (19.3)) 

 is continuous (by Theorem (19.5)) 

∴ h(x) is continuous. 

20. Derivative: 

The derivative of a function f is the function f0 whose value at x is defined by the 

equation: equation:

 

Definition (20.1): 

A function that has a derivative at a point x is said to be differentiable at x. 

Definition (20.2): 

A function that is differentiable at every point of its domain is called differentiable. 

Definition (20.3): 

When the number f0(x) exists it is called the slope of the curve y = f(x) at x. 

The line through the point (x,f(x)) with slope f0(x) is the tangent to the curve at x. 

Example (20.1): Find  by definition for the following functions: 
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Solution: 2 

 

 

Exercises (20.1): Find  by definition for the following functions: 

 3 √  

1) y = x + 3 2)3) y = x

 4)5) 

Differentiation Theorem: 

1) is constant. 

2) 
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3) 

4) 

5) 

6) 

7) 

Example (20.2): Find f0 of the following functions: 

 p 3 − 2 + √ 1 3) f(x) = (x2 + 1)3(x3 − 1)2 

1) + 3 2) f(x) = x 

x + 1 

Solution: 1 

 

Solution: 2 

 
Solution: 3 

f0(x) = (x2 + 1)3 × 2(x3 − 1) × 3x2 + (x3 − 1)2 × 3(x2 + 1)2 × 2x f0(x) = 

6x2(x2 + 1)3(x3 − 1) + 6x(x3 − 1)2(x2 + 1)2 

Exercises (20.2): Find f0 of the following functions: 

1) 2)  3)  

4) 5)  6) f(x) = (x2 + 1)8 

7) f(x) = (x + 1)2(x2 + 1)−3 
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20.1 Second and Higher-Order Derivative: 

If the derivative f0 of a function f itself differentiable then the derivative of f0 is denoted 

by f00 and is called the second derivative of f. 

 
Example (20.3): Find f(5)(x) where f(x) = 3x4 − 2x3 + x2 − 4x + 2 

Solution: 

f0(x) = 12x3 − 6x2 + 2x − 4 

f00(x) = 36x2 − 12x + 2 f000(x) 

= 72x − 12 f(4)(x) = 72 f(5)(x) 

= 0 

Exercises (20.3): Find  where  

Theorem (20.1): 

If f has a derivative at x = c, then f is continuous at c. 

20.2 Chain Rule: 
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i. If y is a differentiable function of u and u is a differentiable function of x then, 

 

ii. If y is a differentiable function of u and x is a differentiable function of u then, 

 

Example (20.4): If y = t4 + 2t + 3 , x = t2 + 1 find  

Solution: 

+ 2 and  

 

Example (20.5): If + 1 find  

Solution: 

 

Exercises (20.4): 

1)  find  

2) find  

3)  find  
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4) If y = s2 , s = r + 1 , r = t2 − 5 , t = w + 3 , w = x2 find  

20.3 Implicit differentiation: 

If y can not be written in the form y = f(x) then to find : 

i. Differentiable both sides with respect to x. ii. 

Solve the result for . 

Example (20.6): Find  for the functions 

1) x3 + y3 = 3xy 

Solution: 

 

2) xy + y2x + 3y − 2x = 0 

Solution: 

3)  

Solution: 
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Exercises (20.5): Find  if 

1)  

3) 

5) 

20.4 Derivatives of Trigonometric Functions: 

1)  

2) 

3) 

4) 
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5) 

6) 

Example (20.7): Find ) if 

1) f(x) = tan(3x2) Solution: 

f0(x) = 6xsec2(3x2) 

2) y = sin(2x) + sec(3x) 

Solution: 

3)  

Solution: 

4)  

Solution: 

 
5) xy = csc(x − y) 

Solution: 
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Exercises (20.6): Find  for the following functions: 

1) y2x = cos3(x − y)2 2) y = x2 tan(x2) 

3) y = cot  4) yx2 = sin4(x3) 

5) y = tan2(x)cot2(1 − x) 6) y = tan2(x)cot2(x) 

20.5 Derivatives of the Inverse Trigonometric Functions: 

1) 

2) 

3) 

4) 

5) 

6) 
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Proof: 1 

 

Let y = sin−1(u) ⇒ sin(y) = u 

 

Example (20.8): Find  if 

1) y = sin−1(3x2) Solution: 

2)  

Solution: 

 

3) y = sec−1(2x2) Solution: 

 

lih 

Exercises (20.7): Find  for the following functions: 

1)  2) y = xcos−1(3x) 

3)  4)  
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20.6 Derivatives of the Logarithmic and Exponential Functions: 

1)  

2) 

3) 

4) 

Example (20.9): Find  for the following functions: 

1)  

2)  

3)  

4)  
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5) 

6) 

Exercises (20.8): Find  for the following functions: 

1) y = eln(x)−ln(1+x) 2)  3)  4) Example 

(20.10): Find  for the following functions: 

1) y = (sin(x))cos(x) 

Solution: 

⇒ ln(y) = ln(sin(x))cos(x) 
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2) yx = xy 

Solution: 

 

Exercises (20.9): Find  for the following functions: 

1) y = (x)sin(x) 2) y = xx 3) y = xx2 

20.7 Derivatives of Hyperbolic Functions: 

1) 

2) 

3) 

4) (coth(  

5)  

6) )coth(u).  

dx Proof: 

1 
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Example (20.11): Find  for the following functions: 

1)  

2) y = tanh(x3)coth(x2) 

) + coth(x2)(sech2(x3)).(3x2) 

3)  

4) 

= 2coth(2x) 

;lm 

Exercises (20.10): Find  for the following functions: 

1) y = sech3(2x) 2) y = sinh(tan(x)) 3)  

20.8 Derivatives of the Inverse Hyperbolic Functions: 

1) 

2) 

3) 
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4) (coth ghfgf, 

ghfgf|u| > 1 dx 

5) 

6) 

Proof: 1 

Let y = sinh−1(u) = ln(u + pu2 + 1) 

 

Example (20.12): Find  for the following functions: 

1)  

2) 
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3) 

4) 

5)  

Exercises (20.11): Find  for the following functions: 

1) y = coth  2) y = etanh−1(2x) 3) coth  

21. L’Hˆopital’s Rule: 

Suppose that f(x◦) = g(x◦) and that the functions f and g are both differentiable on an 

open interval (a,b) that contains the point x◦. 

Suppose also g0 6= 0 at every point in (a,b) except possibly x◦, then 

 

provided the limit on the right exists. 
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i. The Form  k 

Example (21.1): Find lim 

x→0 Solution: 

 
Example (21.2): Find lim 

x→0 Solution: 

 

Example (21.3): Find lim 

x→3 Solution: 

 

 Example (21.4): Find lim  
x→∞ 

Solution: 

 

Exercises (21.1): Find 

1)2) lim 

3)4) lim 

ii. The Form (0.∞s&s∞ − ∞) kjl 

Example (21.5): Find lim x2e−x = 0.∞ x→∞ 

Solution: 
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Example (21.6): Find lim 

x→0 Solution: 
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iii. The Form  kjl 

Example (21.7): Find lim  

x→0 Solution: 

Let  

 

Example (21.8): Find lim(sin(x) − cos(x))tan(x) = 1∞ 

x→π2 Solution: 

Let y = (sin(x) − cos(x))tan(x) ⇒ ln(y) = tan(x)ln(sin(x) − cos(x)) 

 

Exercises (21.2): Prove that 

 1) = 1 2) lim 

Exercises (21.3): Find 
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 1)) 2) lim(sec3(x))cot2(x)

 3) lim(1 − x)ln(x) 
 x→0 x→1 

22. Applications of Derivative: 

i. Engineering Applications: 

Example (22.1): Find the slope of the parabola y = x2 at x = 2. 

Solution: 

∵ m = y0 = 2x 

∴ m|x=2 = 2 × 2 = 4 

√  

Example (22.2): Find the equation for the tangent to the curve y = x + 1 at (1,2) 

Solution: 

 

Remark (22.1): 

−1 

The slope for the normal =  

slope of tangent 

Example (22.3): Find the equation for the normal to the curve x2 − xy + y2 = 7 at the 

point (−1,2) 
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Solution: 

 

 
−5 

∴ The slope of the normal=  

4 

 

Exercises (22.1): 

1) Find the equation for the tangent and normal to the curve y = x2 + 2x + 1 at 

intersection point with vertical line (y − axis). 

2) Find the equation for the tangent to the curve y = −x2 + 2x + 3 at intersection point 

with horizontal line (x − axis). 

ii. Physical Applications: 

Definition (22.1): If s(t) is the position function of a particle moving on a coordinate 

line, then the velocity of the particle at time t is defined by. 

 

Definition (22.2): If s(t) is the position function of a particle moving on a coordinate 

line, then the acceleration of the particle at time t is defined by. 

  or  
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Example (22.4): Find the body’s velocity and acceleration at time t = 2 if the position 

s(t) = 4 + 2t + t2 of body moving along a coordinate line, where s is in meters and t is in 

seconds. 

Solution: 

 

23. Maximum, Minimum and Mean Values: 

Definition (23.1): A function f has a local 

maximum value at an interior point c if f(c) ≥ f(x) , 

∀x. And f has a local minimum value at interior 

point e if f(e) ≤ f(x) , ∀x 

Theorem (23.1): 

If a function f has a local maximum or local minimum value at point c and f0 is defined 

at c, then f0(c) = 0 

Remark (23.1): 

1. If f0(c) = 0 and f00(c) < 0, then f has local maximum at x = c 

2. If f0(c) = 0 and f00(c) > 0, then f has local minimum at x = c 

Rolle’s Theorem: 
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Let f(x) be continuous on [a,b] and differentiable on (a,b) and If f(a) = f(b) = 0 then there 

is at least one number c in (a,b) such that f0(c) = 0. 

Example (23.1): Find all values of c which satisfy the Rolle’s theorem of the function 

 , −3 ≤ x ≤ 3 

Solution: 

The polynomial function  is continuous at every point of the interval 

[−3,3] and differentiable at every point of the interval (−3,3). 

 

∴ By Rolle’s Theorem, ∃ic ∈ (−3,3) 3 f0(c) = 0 

 
 √  √  √  √  

∴ There exists two numbers c = 3 and c = − 3 such that f0( 3) = 0 and f0(− 3) = 0 

The Mean Value Theorem: 

Let f(x) be continuous on [a,b] and differentiable on (a,b), then there is at least one 

number c in (a,b) such that 

 

Example (23.2): Find all values of c which satisfy the mean value theorem for the 

following functions. 

1)  



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j67 

2), 1 ≤ x ≤ 3 

3) f(x) = 4 − x2 , −1 ≤ x ≤ 1 

Solution: 1 

The function  is continuous on  and differentiable on . 

 

 

∴ By mean value theorem,  

= 1 and c = −1 

Definition (23.2): Let f be defined on the interval I, and let x1 and x2 denote numbers in 

the interval I, then 

1. f is increasing on the interval I if f(x1) < f(x2) whenever x1 < x2 

2. f is decreasing on the interval I if f(x1) > f(x2) whenever x1 < x2 

 
 x1 x2 x1 x2 

 Increasing Decreasing 

 sami mezal sami mezal 

Theorem (23.2): 

f ( x 1 ) f ( x 2 ) f ( x 1 ) f ( x 2 ) 
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Let f be a function that is continuous on a closed interval [a,b] and differentiable on the 

open interval (a,b), then 

1. If f0(x) > 0 for every value of x in (a,b), then f is increasing function. 

2. If f0(x) < 0 for every value of x in (a,b), then f is decreasing function. 

3. If f0(x) = 0 for some x in (a,b), then x is critical point. 

Example (23.3): Let f(x) = 2x2 + 4 

Solution: 

∵ f0(x) = 4x 

⇒ f0(x) > 0 , ∀x > 0 ⇒ f increasing function. 

⇒ f0(x) < 0 , ∀x < 0 ⇒ f decreasing function. 

⇒ f0(x) = 0 if x = 0 ⇒ x is critical point. 

Theorem (23.3): 

Let f00 be twice differentiable on an open interval I, then 

1. If f00(x) > 0 on I, then f is concave up on I. 

2. If f00(x) < 0 on I, then f is concave down on I. 

3. If f00(x) = 0 for some x in I, then x is inflection point. 

24. Curve Sketching With y0 and y00 

Steps of Graphing: 

1. Find y0 and y00. 
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2. Find y0 is positive, negative and zero. 

3. Find y00 is positive, negative and zero. 

4. Make summary table. 

5. Draw the graph. 

Example (24.1): Sketch the graph of y = x3 − 3x2 + 4 

Solution: 

⇒ y0 = 3x2 − 6x 

⇒ If y0 = 0 ⇒ 3x2 − 6x = 0 ⇒ x(3x − 6) = 0 ⇒ x = 0y&yx = 2 

∴ (0,4) and (2,0) are critical points. 

 + + + + + + + − − − − −− + + + + ++ 

 

⇒ y00 = 6x − 6 

If y00 = 0 ⇒ 6(x − 1) = 0 ⇒ x = 1 

∴ (1,2) is inflection point. 

− − − − − − − + + + + + + + 

 

0 2 

1 

inflection 
point 

• 
• 

concave 
down 

• 
concave 

up 
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x y y0 y00 Behavior 

-

1 
0 9 

-

12 

concave 

down 

0 4 0 -6 
local 

maximum 

1 2 
-

3 
0 

inflection 

point 

2 0 0 6 
local 

minimum 

3 4 9 12 concave up 
 

 

24.1 Asymptotes: 

Definition (24.1): A line y = b is a horizontal asymptote of the graph of a function y = 

f(x) if either lim x→∞ 

A line x = a is a vertical asymptote of the graph of a function y = f(x) if one of the following 

conditions is true; lim f(x) = ∓∞ , lim f(x) = ∓∞ , lim f(x) = ∓∞ 

 x→a x→a+ x→a− 

Example (24.2): Find the asymptotes of 

the curve Solution: 

1) Horizontal asymptote 

2) Vertical asymptote 

24.2 Oblique (Slant) Asymptotes: 

− 1 1 2 3 4 

− 1 

1 

2 

3 

4 

5 

(0 , 4) 

(1 , 2) 

(2 , 0) 

(3 , 4) 

( − 1 , 0) x 

y 

− 4 − 3 − 2 − 1 1 2 3 4 

− 2 

− 1 

1 

2 
x is =1 V . A 

y =0 is H . A 
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If the function is  such that the degree of the numerator exceeds the degree of the 

denominator by one, then the graph of  will have an oblique asymptote by division 

of p(x) by q(x) to obtain 

 

Where (ax + b) is the oblique asymptote. 

Example (24.3): Find the oblique asymptote (O. A) for the function  

Solution: x 

 22 + 122 

2 

2x − 4 )@x@2 − 322 

2x − 422∓@x@2 ± 2x 

 

Example (24.4): Find the oblique asymptote (O. A) for the function  

Solution: 

xx + 1 

∴ y = x is O. A ghx )@x@2 + 1 

x∓@x@2+1 
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Example (24.5): Sketch the graph of 

Solution: 

 

∴ (1,2) and (−1,−2) are critical points. 

 + + + + + + + − − −0 − −− + + + + ++ 

 

 there is no inflection point. 

⇒ y00 > 0 if x > 0 ⇒ y is concave up. 

⇒ y00 < 0 if x < 0 ⇒ y is concave down. 

Asymptotes: 

1. Horizontal asymptote 

 there is no horizontal asymptote 

2. Vertical asymptote 

= 0 is Vertical asymptote 

3. Oblique asymptote 

∴ y = x is oblique asymptote 

x y y0 y00 Behavior 

-2  3 
4 

−1 
4 

concave 

down 

-1 -2 0 -2 
local 

maximum 

-1 1 
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-

0.5 

-

2.5 

-

3 

-

16 
decreasing 

0.5 2.5 
-

3 
16 decreasing 

1 2 0 2 
local 

minimum 

2    concave up 

 

Exercises (24): Sketch a graph of the following functions (using y0 and y00): 

1) y = x3 − 3x + 3 3)  

2)  

JI≪ • ≫JI 

− 6 − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 

− 5 

− 4 

− 3 

− 2 

− 1 

1 

2 

3 

4 

5 

y = x is O . A 
x is =0 V . A 

(0 . 5 , 2 . 5) 

(-0.5,-2.5) 

(2 , 2 . 5) 

(-2,-2.5) 

(-1,-2) LocalMaximum 

(1 , 2) LocalMinimum 

x 

y 
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1 
Integration 

 

1.1 Definite Integral: 

Given a function f (x) that is continuous on the 

interval [a,b], we divide the interval into 

"n"subinterval of equal width ∆x, and from 

each interval choose point . 

Then the definite integral of f (x) from a to b is: x∗1 x∗2 x∗3 x∗i x∗n n 

 b n 

Z f(x)dx = lim [f(x∗1)∆x + f(x∗2)∆x + ··· + f(x∗n)∆x] = lim Xf(x∗i)∆x a n→∞ n→∞ 

i=1 

Properties of the definite Integral: 

1) 

2) 

y 

x 
a = x 0 b = x x 1 x 2 x i − 1 x i x n − 1 ··· ··· 

y = f ( x ) ∆ x = b − a 
n 

f ( x ∗ i ) 

↓ ↓ ↓ ↓ ↓ 
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3)  is any number. 

 Z b Z b Z b 

4) (f(x) ∓ g(x))dx = f(x)dx ∓ g(x)dx 
 a a a 

 Z b Z r Z b 

5) f(x)dx = f(x)dx + f(x)dx 
 a a r 

6)  is any number. 

1 

7) If f(x) ≥ 0 for a ≤ x ≤ b, then  

8) If f(x) ≥ g(x) for a ≤ x ≤ b, then  

9) If α ≤ f(x) ≤ β for a ≤ x ≤ b, then  

 

Remark (1.1): 

1) 

2) 



 

 

3) 

Example (1): Evaluate the integral  by using definition. 

Solution: 
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! 

1.2 Indefinite Integral: 

Definition (2.1): A function F(x) is called an anti-derivative of a function f(x) if F 0(x)=f(x). If 

F(x) is any anti-derivative of f(x) then the most general anti-derivative of f(x) is called an 

indefinite integral and denoted, Z f(x)dx = F(x) + C, C is any constant. 

Z 

In this definition the is called the integral symbol, f(x) is called the integrand, x is called the 

integration variable and the ”C” is called the constant of integration. 

Properties of the Indefinite Integral: 

 Z Z 

1) kf(x)dx = k f(x)dx, k is any number 

Z Z 

2) −f(x)dx = − f(x)dx 

Z Z Z 

3) (f(x) ∓ g(x))dx = f(x)dx ∓ g(x)dx 

Z 

4) kdx = kx + C, k and C are constant Remark (2.1): 
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1) 

2) 

3)  

Example (1): Find the differentiate for each the following. 

1) 

2) 

3) 

Solution: 
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1) 

2) 

3) 

Theorem (2.1): 

1. 

2. 

Example (2): Evaluate each of the following integrals. 

1) 

2) 
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3) 

4) 

5) 

6) 

7) 

Exercises (2.1): Evaluate each of the following integrals. 

1)2)3) 

4)5)6) 
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Example (3): Evaluate each of the following integrals. 

1)  2)  3)  

Solution: 

1) 

2) 

3)  

Theorem (2.2): 

Suppose f(x) is continuous function on [a,b] and also suppose that F(x) is any 

antiderivative for f(x), then 

 

Example (4): Evaluate each of the following integrals. 
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1) 

2) 

Solution: 

1) 

2) 
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Exercises (2.2): Evaluate the following integrals. 

Z  

1) 2) yp1 + 2y2dy 3)4) 

1.3 Integration of The Trigonometric Functions: 

Z 

1) sin(u)du = −cos(u) + C 

Z 

2) cos(u)du = sin(u) + C 

Z 

3) tan(u)du = ln|sec(u)| + C 

Z 

4) cot(u)du = ln|sin(u)| + C 

Z 

5) sec(u)du = ln|sec(u) + tan(u)| + C 

Z 

6) csc(u)du = ln|csc(u) − cot(u)| + C 

Z 

7) sec2(u)du = tan(u) + C 

Z 

8) csc2(u)du = −cot(u) + C 

Z 

9) sec(u)tan(u)du = sec(u) + C 

Z 

10) csc(u)cot(u)du = −csc(u) + C 

Example (1): Evaluate each of the following integrals. 

Z 

1) sin(2x)dx 2) 

Z 

4) sin2(x)cos(x)dx 5) 
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Solution: 

1)  
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2) 

3) 

4) 

5) 

Exercises (3.1): Evaluate each of the following integrals. 
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1) 3)  

5) 

1.4 Integration of Exponential and Logarithmic Functions: 

1) 

2) 

3) 

Example (1): Evaluate the following integrals. 

1)  
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2) 

3) 

4) 

5) 

6) 

7) 
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8) 

Z 

Example (2): Prove that sec(x)dx = ln|sec(x) + tan(x)| + C Proof: 

 

Exercises (4.1): Prove that. 

Z 

1) tan(x)dx = ln|sec(x)| + C 

Z 

2) cot(x)dx = ln|sin(x)| + C 

Z 

3) csc(x)dx = ln|csc(x) − cot(x)| + C 

Exercises (4.2): Evaluate 

1)2) 

3)4) 6)7) 

Products 

of Sines and Cosines: 

Z 

1. We begin with integral of the form; sinm(x)cosn(x)dx where m and n are nonnegative 

integers (positive or zero), we can divide the work into three cases: 

i. If m is odd, we write m as 2k +1 and use the identity sin2(x) = 1 − cos2(x) to 

obtain . 

Z 
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Example (3): Evaluate the integral sin3(x)cos4(x)dx Solution: 

 

Z 

Example (4): Evaluate the integral sin3(x)cos2(x)dx (H.W) ii. If n is odd, we write 

n as 2k + 1 and use the identity cos2(x) = 1 − sin2(x) 

to obtain, . 
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Z 

Example (5): Evaluate the integral sin4(2x)cos3(2x)dx Solution: 

 

Z 

 Example (6): Evaluate the integral sin2(x)cos5(x)dx (H.W) 

iii. If both m and n are even, we substitute 

  , 

Example (7): Evaluate the integral 

Solution: 
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 Z Z 

2. The integrals sinm (x)dx or cosm (x)dx where m is nonnegative integer. 

 

i. If m is even we can use the identity; 

 

 or  

Z Example 

(8): Evaluate the integral cos4(x)dx Solution: 
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Example (9): Evaluate the following integrals: 

 Z Z 

 1) cos2(2x)dx 2) sin4(2x)dx (H.W) 

ii. If m is odd we write m as 2k + 1 and use the identity; sin2 (x) = 1 − 

cos2 (x) or cos2 (x) = 1 − sin2 (x) 

Z Example 

(10): Evaluate the integral cos5(x)dx Solution: 

 

 Z Z Z 

3. The integrals sin(mx)sin(nx)dx, sin(mx)cos(nx)dx,

 cos(mx)cos(nx)dx 

Z 
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 i. sin(mx)sin(nx)dx (m and n are different). we use the identity; 

 

Z 

Example (11): Evaluate the integral sin(3x)sin(2x)dx Solution: 

 

Z ii. sin(mx)cos(nx)dx (m and n are different). we use the identity; 

 

Z 

 Example (12): Evaluate the integral cos(5x)sin(3x)dx 

Solution: 
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Z iii. cos(mx)cos(nx)dx (m and n are different). we use the 

identity; 

 

Z 

Example (13): Evaluate the integral cos(4x)cos(2x)dx Solution: 

 

Z Example 

(14): Evaluate the integral sec4(2x)dx Solution: 

 
Z 

 Example (15): Evaluate the integral tan4(x)dx (H.W) 

Z 

 Example (16): Evaluate the integral tan2(x)sec4(x)dx 

Solution: 
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Z 

Example (17): Evaluate the integral tan3(x)sec3(x)dx Solution: 

 

Exercises (4.3): Evaluate the following integrals. 

1) 

5) 
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1.5 Integration of The Inverse Trigonometric Functions: 

1) 

2) 

3)  

Example (1): Evaluate the integral  

Solution: 

 √  √  

a2 = 1 ⇒ a = 1 and u2 = 3x2 ⇒ u = 3x ⇒ du = 3dx 

 

Example (2): Evaluate the integral  

Solution: 

a2 = 1 ⇒ a = 1 and u2 = e2x ⇒ u = ex ⇒ du = exdx 
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Example (3): Evaluate the integral  

Solution: 

a2 = 9 ⇒ a = 3 and u2 = 4x2 ⇒ u = 2x ⇒ du = 2dx 

 

Example (4): Evaluate the integral  

Solution: 

 

a2 = 1 ⇒ a = 1 and u2 = (tan(x))2 ⇒ u = tan(x) ⇒ du = sec2(x)dx 

 

Exercises (5.1): Evaluate the following integrals. 

1)2)3) 

4)5)6) 
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7)  8)  9)  

1.6 Integration of The Hyperbolic Functions: 

Z 

1) sinh(u)du = cosh(u) + C 

Z 

2) cosh(u)du = sinh(u) + C 

Z 

3) tanh(u)du = ln|cosh(u)| + C 

Z 

4) coth(u)du = ln|sinh(u)| + C 

Z 

5) sech2(u)du = tanh(u) + C 

Z 

6) csch2(u)du = −coth(u) + C 

Z 

7) sech(u)tanh(u)du = −sech(u) + C 

Z 

8) csch(u)coth(u)du = −csch(u) + C 

Example (1): Evaluate the following integrals. 
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1) 

2) 

3) 

4) 

5) 

6)  

Exercises (6.1): Evaluate the following integrals. 

 Z ZZ 

1) sech(x)dx 2) coth2(3x)dx3)4)  ex cosh(x)dx 

1.7 Integration of The Inverse Hyperbolic Functions: 
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1) 

2) 

 if |u| < a 
3) 

a if |u| > 
a 

4) 

5) 

Example (1): Evaluate the integral  

Solution: 

a2 = 9 ⇒ a = 3 and u2 = 4x2 ⇒ u = 2x ⇒ du = 2dx 

 

Example (2): Evaluate the integral  

Solution: 

a2 = 1 ⇒ a = 1 and u2 = 9x2 ⇒ u = 3x ⇒ du = 3dx 
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Example (3): Evaluate the integral Solution: 

 

a2 = 1 ⇒ a = 1 and u2 = (tan2(x))2 ⇒ u = tan2(x) ⇒ du = 2 tan(x) sec2(x)dx 

 

Example (4): Evaluate the integral  

Solution: 

a2 = 1 ⇒ a = 1 and u2 = 4x2 ⇒ u = 2x ⇒ du = 2dx 

 

Exercises (7.1): Evaluate the following integrals. 

1)  2)  3)  

1.8 The Methods of Integration: 

1.8.1 Integration by Substitution: 

Z 

p 2dx 

Example (1): Evaluate the integral 2x 1 + x 

Solution: 
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let u = 1 + x2 ⇒ du = 2xdx 
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Example (2): Evaluate the integral  

Solution: 

let  

 

Example (3): Evaluate the integral 

Solution: let u = tan(x) ⇒ du = 

sec2(x)dx 

 

 

Exercises (8.1.1): Evaluate the following integrals. 

1)  2)  3)  

1.8.2 Integration by Completing the Square: 

Example (4): Evaluate the integral  

Solution: 
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Example (5): Evaluate the integral Solution: 

 

Example (6): Evaluate the integral Solution: 

 

Exercises (8.2.1): Evaluate the following integrals. 

1)  2)  3)  

1.8.3 Reducing an Improper Fraction: 

Example (7): Evaluate the integral  

Solution: 

ssssss1 

x + 2 )Zx + 1 x + 22∓Zx ∓ 2 x + 2 + x−1 Example (8): 

Evaluate the integral  

Solution: 
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x 3 XxXXX x 2 x 2 

 (xX−X
X2)(X x + 2)

 ssssssx − 6 

x + 2 )@x@2 − 4x + 4 x + 2∓@x@2 ∓ 2x 

6x ± 122222216 

Example (9): Evaluate the integral 

ssssss3x − 4 

Solution: 2 + 1 )H3xH
H3 − 4x2 + Z3Zx 

x x3 + 2∓H3xHH3 ∓ 

Z3Zx 

x + 2 ± 6x22224 

1.8.4 Integration by Separating a Fraction 

Example (10): Evaluate the integral Solution: 

 

The first integral: 

let  
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The second integral: 

 

Example (11): Evaluate the integral 

Solution: 

 

Example (12): Evaluate the integral  (H.W) 

1.8.5 Integration by Parts 

The formula for integration by parts comes from the product rule: 

 

 

The equivalent formula for definite integrals is: 

 

Z Example 

(13): Evaluate the integral xcos(x)dx 
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Solution: 

let u = x ⇒ du = dx 

dv = cos(x)dx ⇒ v = sin(x) 

Z Z 

∴ xcos(x)dx = xsin(x) − sin(x)dx = xsin(x) + cos(x) + C 

Z Example 

(14): Evaluate the integral ln(x)dx 

Solution: 

let  

 

Z Example 

(15): Evaluate the integral x2exdx 

Solution: 

let u = x2 ⇒ du = 2xdx 

⇒ dv = exdx ⇒ v = ex 

Z Z 

∴ x2exdx = x2ex − 2 xexdx let u = x ⇒ 

du = dx 

 

Z Example 

(16): Evaluate the integral ex cos(x)dx 
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Solution: 

let u = ex ⇒ du = exdx 

⇒ dv = cos(x)dx ⇒ v = sin(x) 

Z Z 

∴ ex cos(x)dx = ex sin(x) − ex sin(x)dx let u = 

ex ⇒ du = exdx 

 

Z 

Example (17): Evaluate the integral sin−1(x)dx 

Solution: 

let  

 

Exercises (8.5.1): Evaluate each of the following integrals. 

 Z Z Z 

1) xsin(x)dx 2) sin(ln(x))dx 3) tan−1(x)dx 
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 Z Z Z Z 

4) x3exdx 5) xln(x)dx 6) ln(x2 + 2)dx 7) xsec−1(x)dx 

1.8.6 Tabular Integration: 

Z 

We have seen that integrals of the form f(x)g(x)dx, in which f can be differentiated 

repeatedly to become zero, and g can be integrated repeatedly with out difficulty, are 

natural candidates for integration by parts. 

Z 

Example (18): Evaluate the integral x2exdx by tabular integration. 

Solution: 

f(x) = x2sam , samg(x) = ex 

 

Z 

 ⇒ x2exdx = x2ex − 2xex + 2ex + C 

Z 

Example (19): Evaluate the integral x3 sin(x)dx by tabular integration. 

Solution: 

f(x) = x3sam, samg(x) = sin(x) 

f ( x )  g ( x )  

x 2 
+ e x 

e x 2 x − 

e x 2 
+ 

e x 0 
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Z 

 ⇒ x3 sin(x)dx = −x3 cos(x) + 3x2 sin(x) + 6xcos(x) − 6sin(x) + C 

1.8.7 Trigonometric Substitutions: 

 
p 2 − b2u2 

i. The function of the form a 

we use the following 

substitute  

Example (20): Evaluate the integral Solution: 

a = 2 , b = 1 

let

  

f ( x )  g ( x )  

x 3 
+ − sin( x ) 

− cos( x ) 3 x 2 
− 

− sin( x ) 6 x 
+ 

− cos( x ) 6 
− 

− sin( x ) 0 

z 
√ 

a 2 − b 2 u 2 

z 
√ 

4 − x 2 
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 Example (21): Evaluate the integral

Solution: 

a = 3 , b = 2 

let  

z 
√ 

9 − 4 x 2 
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 sin(HzH) 

p 2 + b2u2 ii. 

The function of the form a 

we use the following 

substitute  

Example (22): Evaluate the integral Solution: 

a = 3 , b = 2 

let   

z 
a 

z 
3 
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 cot(z)| + C 

 

Example (23): Evaluate the integral Solution: 

let 

2 
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p 2u2 − a2 iii. 

The function of the form b 

we use the following 

substitute  

Example (24): Evaluate the integral  

Solution: 

a = 5 , b = 1 

5 let x = 5sec(z) ⇒ dx = 5sec(z)tan(z)dz 

⇒ x2 − 25 = 25sec2(z) − 25 = 25(sec2(z) − 1) = 25tan2(z) 

 

Exercises (8.7.1): Evaluate the following integrals. 

1)  2)  

1.8.8 Integration by Partial Fractions: 

The method of partial fractions is used to integrate rational functions  where 

P(x) and Q(x) are polynomial functions and the degree of P(x) is less than the degree of 

z 
a 

⇒ 
Z dx 

√ 
x 2 − 25 

= 
Z 5 sec ( z tan ( ) z ) dz 

p 25 tan 2 ( z ) 
= 

Z   5 sec ( z ) 
    tan( z ) 

     ( 5 tan z ) 
dz = 

Z 
sec( z ) dz 

⇒ 
Z dx 

√ 
x 2 − 25 

= ln | sec( z ( tan )+ z ) | + C = ln 
 
 
 
 
 

x 

5 
+ 

√ 
x 2 − 25 /  x 

5 /  x 

 
 
 
 
 

+ C 

⇒ 
Z dx 

√ 
x 2 − 25 

= ln 
 
 
 
 
 

x 

5 
+ 

√ 
x 2 − 25 

5 

 
 
 
 
 

+ C = ln 
 
 
 
 
 

x + 
√ 

x 2 − 25 

5 

 
 
 
 
 

+ C 

z 
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Q(x). If the degree of numerator greater than or equal the degree of the denominator, 

then must use long division firstly. 

Remake (8.8.1): 

1. First factor the denominator terms with simpler form. 

2. If there is a factor has a fraction degree, then can not use this method to solve the 

given integral. 

There are four cases to partial fractions: 

Case 1: The denominator has only first degree factors, none of which are repeated. 

Example (25): Evaluate the integral  

Solution: 

 1 1 A B 

 = = + × (x − 2)(x + 2) 

x2 − 4 (x − 2)(x + 2) x − 2 x + 2 

⇒ 1 = A(x + 2) + B(x − 2) ⇒ 1 = Ax + 2A + Bx − 2B ⇒ (A + B)x + (2A − 2B) = 1 

A + B = 0···(1)hgg × 2 ⇒ kghh2A + 2B = 0···(1) 

2A − 2B = 1···(2) ⇒ hjfgf∓2A ± 2B = ∓1···(2) 

4B = −1 ⇒ 

 Z dx Z  14 − 14 dx = 1  1 

⇒  = 

 x2 − 4 x − 2 x + 2 4 x − 2 4 x + 2 

 Z dx 1 1 

⇒ =  ln|x − 2| −  ln|x + 2| + C x2 − 4 4 4 

B = 
− 1 

4 
⇒ A = 

1 

4 

Z dx 
− 

Z dx 
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Example (26): Evaluate the integral  

Solution: 

 

 

4B = 12 ⇒ B = 3 ⇒ A = 2 

 5x − 3 2 3 

⇒ = + 

 x2 − 2x − 3 x + 1 x − 3 

 Z 5x − 3 Z dx Z 

⇒ dx = 2  + 3 x2 − 2x 

− 3 x + 1 

dx 

 = 2ln|x + 1| + 3ln|x − 3| + C 

x − 3 

Exercises (8.8.1): Evaluate the following integrals. 

1)  2)  

Case 2: The denominator has only first degree factors, but some of these factors may be 

repeated factors. 

Example (27): Evaluate the integral Solution: 

 

⇒ 3x + 5 = A(x − 1)2 + B(x + 1)(x − 1) + D(x + 1) 

⇒ 3x + 5 = A(x2 − 2x + 1) + B(x2 − 1) + D(x + 1) 
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⇒ 3x + 5 = Ax2 − 2Ax + A + Bx2 − B + Dx + D 

⇒ 3x + 5 = (A + B)x2 + (D − 2A)x + (A − B + D) 

A + B = 0···(1) 

−2A + D = 3···(2) 

A + D − B = 5···(3) 

from (1) and (3) ⇒ 2A + D = 5···(4) from (1) 

and (3) ⇒ −2A + D = 3···(2) from (1) and (3) 

⇒ 2D = 8 ⇒ D = 4 

−2A + 4 = 3 ⇒  

Z 

⇒  

Z 

⇒  

Example (28): Evaluate the integral  

Solution: 

⇒ x + 1 

= Ax2 − 

Ax + 

Bx − B + 

Dx2 

⇒ x + 1 = (A + D)x2 + (−A + B)x − B 

⇒ A + D = 0···(1) 

−A + B = 1···(2) 

−B = 1 ⇒ B = −1 ⇒ A = −2 ⇒ D = 2 

 Z x4 − x3 − x − 1 Z Z −2 Z 

⇒ dx =

 xdx − dx − x3 − x2

 x 

 Z x4 − x3 − x − 1 x2 1 

⇒ dx =  + 2ln|x| −

  − 2ln x3 − x2 2

 x 

x3 − x22x x3 − x2 )@x@4 − 

@x@3 − x − 1 

A = 
1 

2 
⇒ B = 

− 1 

2 
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|x − 1| + C 

Case 3: The denominator has one or more quadratic factors, none of which are repeated. 

Example (29): Evaluate the integral 

Solution: 

 

⇒ x3 + x2 + x + 2 = (A + D)x3 + (B + F)x2 + (A + 2D)x + (B + 2F) 

⇒ A + D = 1···(1) 

⇒ B + F = 1···(2) 

⇒ A + 2D = 1···(3) 

⇒ B + 2F = 2···(4) 

From (1) and (3) ⇒ D = 0 ⇒ A = 1 From (2) 

and (4) ⇒ F = 1 ⇒ B = 0 
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Example (30): Evaluate the integral  (H.W) 

Case 4: The denominator has one or more quadratic factors, some of which are repeated 

quadratic factors. 

Example (31): Evaluate the integral  

Solution: 

⇒ 1 = A(x4 + 2x2 + 1) + (Bx + D)(x3 + x) + (Ex + F)x 

⇒ 1 = Ax4 + 2Ax2 + A + Bx4 + Bx2 + Dx3 + Dx + Ex2 + Fx 

⇒ 1 = (A + B)x4 + Dx3 + (2A + B + E)x2 + (D + F)x + A 

⇒ A = 1 and D = 0 

⇒ A + B = 0···(1) ⇒ B = −1 

⇒ 2A + B + E = 0···(2) ⇒ E = −1 

⇒ D + F = 0···(3) ⇒ F = 0 

Z 

⇒  
Z 

⇒  
Exercises (8.8.2): Evaluate each of the following integrals. 
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1) 

4) 

7) 

1.8.9 Special Substitute: Example (32): Evaluate 

the integral  

Solution: 

1 + u21 

 √  2 

let u = x ⇒ x = u ⇒ dx = 2udu 

1 + u )Zu∓1 

1 + u2∓Zu ∓ 1 

1 + u2222−1 

Z √  

Example (33): Evaluate the integral 1 + exdx 

Solution: 

√ let u = 1 + ex ⇒ u2 = 1 + ex ⇒ 

ex = u2 − 1 

1 + u221 u2 − 

1 )@u@2∓1 



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j49 

 

u2 − 12∓@u@2 ± 

1 u2 − 

122222221 

 

⇒ 1 = (A + B)u + (A − B) 

⇒ A + B = 0···(1) ⇒ A = −B 

⇒ A − B = 1···(2) ⇒ −2B = 1 ⇒ 

 Z du Z 1du Z 1 1 

⇒  = 2 + ln|u + 1| + C u2 − 1 u − 1 u + 

1 2 2 

√ 

∴Z √ uu −+ 11 + C = 2√1 + ex + ln√1 +1 + eexx −+ 11 + C 

 1 + exdx = 2u + ln  

 

Exercises (8.9.1): Evaluate the following integrals. 

1)  2)  

1.8.10 Substitute by : 

Assume that  

Since  

B = 
− 1 
2 ⇒ A = 1 

2 
− 1 
2 du 

= ln | u − 1 |− 
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⇒  

Also 

 Since 

 

Also 

z = tan x2
 ⇒ x2 = tan−1(z) ⇒ x = 2tan−1(z) 

⇒  

Example (34): Evaluate the integral Solution: 

 C 

Example (35): Evaluate the integral 

Solution: 

cos( x )= 
1 − z 2 

1+ z 2 

dx = 
2 dz 

1+ z 2 
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Exercises (8.10.1): Evaluate the following integrals. 

1)  2)  

1.9 Application of Definite Integrals 

1.9.1 Area Between Curves 

Definition (9.1.1): If f(x) and g(x) are continuous functions on the interval [a,b] and f(x) ≥ 

g(x) for all x in [a,b] then the area of the region between the curves y = f(x) and y = g(x) 

from a to b is the integral of (f − g) from a to b i.e:- 

 

Example (1): Find the area of the region bounded by y 

= x + 6 and the curve y = x2. 

Solution: 

x2 = x + 6 ⇒ x2 − x − 6 = 0 ⇒ (x − 3)(x + 2) = 0 ⇒ x = 3 

and x = −2 

A = Area = 
Z b 

a 
( f ( x ) − g ( x )) dx 

− 6 − 4 − 2 2 4 

2 

4 

6 

8 

10 

( − 2 , 4) 

(3 , 9) 

x 

y 
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 unit area. 

Example (2): Find the area of the region bounded 

by y2 = x − 1 and the line y = x − 3. 2 

Solution: 

y2 + 1 = y + 3 ⇒ y2 − y + 1 − 3 = 0 ⇒ y2 − y − 2 = 0 

⇒ (y − 2)(y + 1) = 0 

⇒ y = 2 ⇒ x = 5 −2 

⇒ y = −1 ⇒ x = 2 

1 2 3 4 5 

(5 , 2) 

(2 , − 1) 

A 1 
A 2 

x 

y 
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 unit area. 

 unit area. 

Example (3): Find the area of the region bounded by y = sin(x) and y = cos(x) from 

. 

Solution: 

The point of intersection occur when 

A1 = unit area.

  

A2 = unit area. 

x 

y 

π 
4 

π 
2 

x =0 x = π 
2 

A 1 A 2 
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 unit area. 

hi 

Exercises (9.1.1): 

1) Find the area between the curve y = cos(x) and y = −sin(x) from . 

2) Find the area of the region bounded above by y = x2 + 1 and below by y = x − 6 from 

x = −1 to x = 3. 

3) Find the area of the region bounded by y = x2 − 3x + 12 and y = 18 + x − x2. 

4) Find the area of the region between y = x + 1 and y = 7 − x from x = 2 to x = 5. 

5) Find the area of the region between y = 3x3 − x2 − 10x and y = −x2 + 2x. 

6) Find the area of the region bounded by y = x3 and the line y = 2x. 

1.9.2 Area Under the Curve 

Definition (9.2.1): If f(x) is positive continuous function on 

[a,b]. Then the area of region bounded by the curve f(x) and 

x − axis and the lines x = a and x = b is 

j 

x 

y 
y = f ( x ) 

d ( x i ) a b 

A = Area = 
Z b 

a 
f ( x ) dx 
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Remark (9.2.1): If f(x) is negative and continuous on [a,b]. Then the area of region bounded 

by the curve f(x) and x − axis and the lines x = a and x = b is 

 
Example (4): Find the area of the region bounded by y = x2 

and x − axis and the lines x = 1 and x = 3. 

Solution: 

unit area. 

Example (5): Find the area of the region by up the x − axis and under the curve y = 4x − x2. 

Solution: 

We find the intersection point with x − axis. 

y = 0 ⇒ 4x − x2 = 0 ⇒ x(4 − x) = 0 ⇒ x = 0 or 

 unit 

area. 

Exercises (9.2.1): 

Find the area bounded by the curve x = 8 + 2y − y2 and y − axis and the lines y = 3 and y = 

−1 

A = Area = − 
Z b 

a 
f ( x ) dx 

− 2 2 4 

2 

4 

6 

8 

   

   

x =3 x =1 
x 

y 

1 2 3 4 

1 

2 

3 

4 
y =4 x − x 2 

x 

y 
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1.9.3 Area of the Surface 

Definition (9.3.1): If the function f(x) has a continuous first derivative throughout the 

interval a ≤ x ≤ b, the area of the surface generated by revolving the curve y = f(x) about 

the x − axis is the number 

 

Remark (9.3.1): If the function x = g(y) has a continuous first derivative throughout the 

interval c ≤ y ≤ d, the area of the surface S generated by revolving the curve x = g(y) about 

the y − axis is the number 

 
√  

Example (6): Find the area of the surface generated by revolving the curve y = 2 x, 

1 ≤ x ≤ 2 about the x − axis. 

Solution: 

 

 unit area. 

Example (7): Find the area of the surface generated by revolving the curve y = 1 − x, 

S = 
Z b 

a 
2 πy 

s 
1+ 

 dy 

dx 

 
2 
dx 

S = 
Z d 

c 
2 πx 

s 
1+ 

 dx 

dy 

 
2 
dy 
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0 ≤ y ≤ 1 about the y − axis. 

Solution: 

 

 unit area. 

Example (8): The circle x2 + y2 = 9 revolving about x − axis find the area of the 

surface generated by the revolving. 

Solution: 

 

⇒ S = 18π + 18π = 36π unit area. 

Exercises (9.3.1): 

Find the area of the surface generated by revolving the curve 

about the x − axis. 

1.9.4 Length of an Arc of a Curve 
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Definition (9.4.1): If the function f(x) has a continuous first derivative throughout the 

interval a ≤ x ≤ b the length of the curve y = f(x) from a to b is the number: 

Remark (9.4.1): 

1) If x = g(y) , c ≤ y ≤ d then 

2) If x = h(t) , y = g(t) , t1 ≤ t ≤ t 

then 

Example (9): Find the length of the curve; . 

Solution: 

 

 unit length. 

Example (10): Find the length of the curves; y = 1 − cos(θ),x = θ − sin(θ) , 0 ≤ θ ≤ 2π. 

Solution: 

 

L = −4(−1 − 1) = 8 unit length. 

L = 
Z b 

a 

s 
1+ 

 dy 

dx 

 
2 
dx 

L = 
Z d 

c 

s 
1+ 

 dx 

dy 

 
2 
dy 

2 L = 
Z t 2 

t 1 

s  dx 

dt 

 2 
+ 

 dy 

dt 

 2 
dt 
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Exercises (9.4.1): 

1) Find the length of the curve; y = ex from x = 1 to x = 2. 2) Find 

the length of the curve; y = x2 such that 0 ≤ x ≤ 1. 

1.9.5 Volumes 

Solids of revolution are solids whose shapes can be generated by revolving plan regions 

about axes. 

i. Disk Method 

Definition (9.5.1): Volume of a solid of revolution (Rotation about the x − axis). the 

volume of the solid generated by revolving the region between the graph of a continuous 

function y = f(x) and the x − axis from x = a to x = b about the x − axis is: 

 

• Volume of a solid of revolution (Rotation about the y − axis) is: 

V = Volume = 
Z b 

a 
π ( f ( x )) 

2 
dx  ··· (1) 
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Solution: 

√ 

y = 2 2 

Solution: 

V = Volume = 
Z b 

a 
π ( f ( y )) 

2 
dy  ··· (2) 

  y = x 2  x =0 ,x = 

2  x − axis , is revolved about x − axis  

V = π 
Z b 

a 
( f ( x )) 

2 
dx = π 

Z 2 

0 
x 4 dx = π 

 x 5 

5 

 
2 

0 
= 

32 π 

5 

  

a − x  x − axis  x − axis 

 

V = π 
Z a 

− a 

 p a 2 − x 2  
2 

dx = π 
Z a 

− a 
( a 2 − x 2 ) dx 

V = π 
 

a 2 x − 
x 3 

3 

 
a 

− a 
= π 

 
a 3 − 

a 3 

3 

 
− 

 
− a 3 + 

a 3 

3 

 

V = π 
 2 a 3 

3 
+ 

2 a 3 

3 

 
= 

4 

3 
πa 3 
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Exercises (9.5.1): 

1) The region between the curve  is revolved about the y − axis 

to generate a solid. Find the volume of the solid. 

√  

2) Find the volume generated by revolving the region bounded by y = x and the lines y 

= 1 and x = 4 about the line y = 1. 

ii. Washer Method 

Definition (9.5.2): Let f and g be continuous and nonnegative on [a,b], and suppose that 

f(x) ≥ g(x) for all x in the interval [a,b], then the volume of the solid generated by revolving 

the region bounded above by y = f(x), below by y = g(x) and on the sides by the lines x = 

a and x = b about the x − axis is: 

 

• Volume of a solid of revolution (Rotation about the y − axis) is: 

 
√  

V = Volume = 
Z b 

a 
π  ( f ( x )) 

2 − ( g ( x )) 
2  dx  ··· (1) 

V = Volume = 
Z b 

a 
π  ( f ( y )) 

2 − ( g ( y )) 
2  dy  ··· (2) 
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Example (13): The area between the curve y = x and y = x is 

revolved about x − axis to generated a solid. 

Find the volume of the solid. 

Solution: 

kjjn 

Example (14): The region bounded by the parabola y = x2 and the line y = 2x is revolved 

about the line x = 2 parallel to the y − axis. Find the volume of the solid. 

Solution: 

√ 
and x = y 

 and y = 4 

 

Exercises (9.5.2): 

1) Find the volume of the solid obtained by rotating the region bounded by y = x2−2x 

and y = x about the line y = 4. 
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2) Find the volume of the solid generated when the region between the graphs of the 

equations  and g(x) = x over the interval [0,2] is revolved about the x − 

axis. 

iii. Cylindrical Shell (Shell Method) 

Definition (9.5.3): Let y = f(x) be continuous and nonnegative on the interval [a,b] (0 ≤ a 

< b), and let R be the region that is bounded above by y = f(x), below by x − axis, and on 

the sides by the lines x = a and x = b. Then, the volume of the solid generated by revolving 

the region R about the y − axis is given by: 

 

• x = g(y) , c ≤ y ≤ d about x − axis is; 

 

Example (15): Find the volume of the solid generated when the region enclosed between 

√  

y = x, x = 1, x = 4, and the x − axis is revolved about the y − axis. 

Solution: 

V = Volume = 
Z b 

a 
2 πxf ( x ) dx  ··· (1) 

V = Volume = 
Z d 

c 
2 πyg ( y ) dy  ··· (2) 
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First sketch the region (Figure a); then imagine revolving 

it about the y − 

axis (Figure b). 

Example (16): 

Use cylindrical 

shells to find the volume of the solid obtained by rotating 

√  

about the x − axis the region under the curve y = x from 0 

to 1. 

Solution: 

If y = √x  ⇒ x = y2

  

Exercises (9.5.3): 

1) The region bounded by the parabola y = x2, the y − axis and the line y = 1 is revolved 

about the line x = 2 to generate a solid. Find the volume of the solid. 

2) The region bounded by the curve y = x3, the x−axis and the line x = 1 is revolved about 

x − axis to generate a solid. Find the volume of the solid. 



 

 

2 

Sequences and Series 

 

2.1 Sequences: 

Definition (2.1.1): An infinite sequence of numbers is a function whose domain is the set 

of all positive integers. 

i.e : A function f : Z+ −→ X where X is any set, called a sequence in X. 

Remark (2.1.1): 

1) Since the sequence is a function and has domain Z+, then we can to say the sequence 

by the set:  

2) Since the domain all the sequence is the set Z+, then :  

3) If f(n) = an, then the sequence {f(n)} is written as: {an} = {a1,a2,··· ,an,···} Example (1): 

 

 

The number f(n) is the n − th terms of the sequence or the term with index n. 
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Example (2):  

 

50 

Example (3): 

The terms n − th terms The sequence 

0, 1, 2, 3, ··· n − 1  

  
 

  
 

  
 

  
 

3,3,3,3,··· 3  

  
 

Theorem (2.1.1): 

The sequence {an} is convergent if  (the limit is exist and finite). If no such limit 

exists, we say that {an} is divergent. 
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that  Example (4): Show 

is convergent. 

Solution: 

nZ 

∴ The sequence is convergent. 

Example (5): Show that whether  convergent or not. 

Solution: 

 en ∞ 
lim = we will use (L’Hôpital’s Rule) we get 

n→∞ n ∞ 

∴ The sequence is divergent. 

Theorem (2.1.2): Suppose that {an} and {bn} are convergent sequence such that lim an = 

a and lim bn = b n→∞ n→∞ 

and are finite, then: 

1)  ; k is constant. 

2) lim (an ∓ bn) = lim an ∓ lim bn = a ∓ b n→∞ n→∞ n→∞ 

3)  

4)  ;  

5)  

y 

n 

y = L −  

y = L +  

1 2 3 4 ··· N 

L 

• 
• • 

• 
• 

• 
• 

• 
• • • 

∞ 
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6)  is real number such that ar is exist. 

7)  is real number. 

Example (6): Test the following sequences are convergent or not. 

1)2)3) 

4)5)6) 

7) 

 
Solution: 

1)  

∴ The sequence is convergent. 

2)  

∴ The sequence is convergent. 

3)  

∴ The sequence is convergent. 

4)  

∴ The sequence is convergent. 

5)  
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 ∴ The sequence is convergentnZ. 

6) 

 

∴ The sequence is convergent. 

7)  

∴ The sequence is convergent. 

8)  

∴ The sequence is divergent. 

9)  

∴ The sequence is convergent. 

Example (7): Show that  is convergent. 

Solution: 

 

let  and  
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. 

let  

⇒ If n → ∞ ⇒ m → 0 

 

 The sequence is convergent. 

Theorem (2.1.3): 

If a sequence {an} convergent, then its limit is unique. 

Definition (2.1.2): A sequence  is called: 

increasing if a1 ≤ a2 ≤ a3 ≤ ··· ≤ an ≤ ··· (i.e., an ≤ an+1,∀n). decreasing if 

a1 ≥ a2 ≥ a3 ≥ ··· ≥ an ≥ ··· (i.e., an ≥ an+1,∀n). 

A sequence that is either increasing or decreasing is said to be monotonic. 



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j71 

 

Example (8): Explain the following sequences monotonic or not? 

1)  2)  3)  

Solution: 

1)  

Since . 

Hence the sequence . 

2)  

Since  

 

Hence the sequence . 

3)  

i) If n is odd 

 and  

∴ The sequence is increasing. 

ii) If n is even 

 and  

∴ The sequence is decreasing. 
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Hence the sequence . 

Exercises (2.1.1): Show that whether the following sequences are convergent or not? 

1)2)3) 

4)5)6) 

7)8) 

Exercises (2.1.2): Write a formula for the n−th term an of the following sequence and test the 

sequence is converge or not? 

0.7,0.77,0.777,0.7777,··· 

Definition (2.1.3): A sequence {an} is bounded above if there is a number M such that an ≤ 

M,∀n ∈ Z+ and it is bounded below if there is a number m such that m ≤ an,n ∈ Z+. 

If it is bounded above and below, then {an} is bounded sequence. 

Example (9): 

1)  bounded below by 1. 

2) {1,1,2,2,3,3,···} bounded below by 1. 

3)  bounded below by 0 and bounded above by 1. 

4) {1,−1,1,−1,···} bounded below by -1 and bounded above by 1. 

Theorem (2.1.4): 

Every bounded and monotonic sequence is convergent. 
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Example (10): Show that  convergent sequence. 

Solution: 

Since  decreasing ⇒ monotonic sequence. 

 bounded above by 1.  bounded below 

by 0  bounded sequence. 

 convergent sequence (by Theorem (2.1.4)). 

Example (11): Show that whether  is convergent sequence or not? 

Solution: 

 bounded below by 2. 

1 

(since 2n ≤ 2) 

 bounded above by 6  bounded sequence. 

 

⇒ decreasing sequence ⇒ monotonic sequence ⇒ convergent sequence. 

Theorem (2.1.5): 

Let {an},{bn} and {cn} be three sequences and let an ≤ bn ≤ cn,∀n such that lim an 

= lim cn = L, where L is constant, then lim bn = L. n→∞ n→∞ n→∞ 

⇒ (2 n +3 n ) 
1 
n ≤ 2 

1 
n × 3=6 



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j74 

 

Example (12): Test the convergent of the following 

1)  2)  

Solution: 

1) Since  

 

 convergent sequence to zero. 2) 

Since  

 

 and  

 convergent sequence to zero. 

2.2 Geometric Sequence: 

Definition (2.2.1): The sequence of the form  is called geometric sequence,where 

a, and r are fixed real number and a 6= 0. 

 

b1 = a , b2 = ar , b3 = ar2 , ··· , bn = arn−1 

Theorem (2.2.1): 

If  is geometric sequence then, 

 

 converge if |r| < 1 
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 if r = 1  if r > 
1kjorkjr ≤ −1 

Example (1): Test the convergent and write the first three terms of the following 

sequences. 

1)  2)  

Solution: 

1)  

 diverge (since geometric sequence with  

2)  converge (since  
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2.3 Infinite Series 

Definition (2.3.1): Geven a sequence of numbers {an}, an expression of the form a1 + a2 + 

a3 + ··· + an + ··· is called an infinite series. The number an is called the n − th term of the 

series. 

The sequence {Sn} defined as; 

S1 = a1 

S2 = a1 + a2 

S3 = a1 + a2 + a3 

... 

 
is the sequence of partial sums of the series. 

~ If {Sn} converge to a limit L then the series converge and that its sum is L. 

 

~ If {Sn} is not converge then the series diverge. 

Example (1): Test the convergent of the series Solution: 

 
... 
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 convergent sequence. 

 converge series to 1. 

Example (2): Show that the series 0.333··· is convergent. 

Solution: 

 

···(1) 

···(2) (1)−(2) 

we get: 
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 convergent 

sequence. 

⇒ The series converge to . 

Theorem (2.3.1): 

The necessary condition for the infinite series a1 + a2 + a3 + ··· + an + ··· to converge 

is that . 

Remark (2.3.1): 

1) The converse of theorem a bove is not true. 

2)converge ⇒ lim Sn = 0 n→∞ 

3) If  either  converge or diverge. 

4)  diverge. 

h 

Example (3): Test the converge of the following 

1)  2)  3)  
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Solution: 

1)  

 diverge. 

2)  

 diverge. 

3)  

but  diverge (we proof later). 

hh 

Theorem (2.3.2): 

Let Xan converge to L1 and Xbn converge to L2, then 1) Xkan converge to kL1, where k is 

constant. 

2) X(an ∓ bn) converge to L1 ∓ L1. 

2.4 Geometric Series 

Definition (2.4.1): An infinite series of the form: 

 ∞ 

                                              
1 ) 
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2 n−1 Xn=1 arn−1 a + ar + ar 

+ ··· + ar + ··· = ∞ 

Xn=0 arn 

is called a geometric series, in which a and r are fixed real number and a 6= 0. 

Theorem (2.4.1): 

 ∞  

X n−1   converge to uif |r| < 1 ar 

 n=1 = 
∞ 

  diverge if |r| ≥ 1 

 n=0  

kjjj 

Example (1): Test the converge of the following 

1)  2)  

Solution: 

1)  

 converge to  since . 

 

diverge since . 

kjjj 
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Example (2): Explain the geometric series convergent or divergent. Find the partial sums 

of the series Solution: 

 

Since  the geometric series is converge. 

 

Example (3): Test the convergence of the series Solution: 

 

Since  converge to 1. 

 converge to (3 × 1) = 3. 

Since  converge to 2. 

 converge to (4 × 2) = 8. 

 converge to (3 − 8) = −5. 

Exercises (2.4.1): Test the convergence of the following. 

1)  2)  
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2.5 Test For Convergence 

1. p-Series: 

The series  converge if p > 1 and diverge if p ≤ 1. 

Example (1): Test the convergence of the following 

1)  2)  3)  

Solution: 

1)  diverge since p = 1. 

2)  converge since p = 2 > 1. 

3)  diverge since . 

2. Comparison Test: 

Let  and  be two series with non-negative terms, then 

~ If  is known to be a convergent series then, convergent too if Un ≤ Vnj,∀n 

~ If is known to be a divergent series then,  divergent too if Un ≥ Vnj,∀n Example 

(2): Test the convergence of the following 

1) 2)3) 

! 
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Solution: 

1)  

since  converge by p − test. 

 converge by comparison test. 

2)  

since  diverge by p − test. 

 diverge by comparison test. 

3) 1! = 1 = 20 

2! = 1 × 2 = 21 

3! = 1 × 2 × 3 = 6 > 22 

4! = 1 × 2 × 3 × 4 = 24 > 23 

... 

 

since  converge (geometric series with Henceconverge by comparison 

test. 
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! 

3. Integration Test: 

Suppose that there is a decreasing continuous function f(x), such that f(x) = Un is the 
∞ 

n − th term of the positive series XUn, then the series and the integral, 
n=1 

both converge or diverge. 

Example (3): Test the convergence of the series Solution: 

 

 diverge by integration test. 

Exercises (2.5.1): Test the convergence of the following. 

1)  2)  3) 4)

 5)  

6)  8) 9)  

4. Infinite Series With Alternating Signs: 

Theorem (2.5.1): 

The series  converge if: 
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1) |an+1| < |an| , ∀n 

2)  

Example (4): Test the convergence of the following series 

1)  2)  

Solution: 

1)  

i. |an+1| < |an| 

ii.  

∴ The series  is convergent. 

2)  

i.  

ii.  

∴ The series  is convergent. 

5. Absolute and Conditional Convergence: 

Theorem (2.5.2): 
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A series  is said to be absolute convergent if the 

, is convergent. But if the series corresponding series of absolute values 

diverge while the series  converge, the  is converge 

conditionally. 

Example (5): Test the convergence of the series  

Solution: 

Since  is convergent series, but  is diverge by p−test. 

∴ the series  converge conditionally. 

Example (6): Test the convergence of the series Solution: 

1)  

2)  

∴ The series is convergent. Now,

 

Since the series  convergent by p − test. 

∴ The series  is convergent absolutely. 
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Remark (2.5.1): 

Every absolutely convergent series is convergent (the converse is not true). 

6. Ratio Test: 

The alternative series  converge absolutely (and hence convergent) if: 

. And diverge if . And if , then 

the series may converge or it may diverge (the test provide no information) 

Example (7): Test the convergence of the series Solution: 

 

∴ The series  is convergent. 

Example (8): Test the convergence of the series Solution: 

 

∴ The series  is divergent. 

Example (9): Test the convergence of the series Solution: 

 

∴ The series  is convergent. 



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j88 

 

Example (10): Find all value of x for which the given series converge:  

Solution: 

at  converge by p − test. 

∴ x = −3 

at  which converge. 

∴ x = 1 

∴ The value is, −3 ≤ x ≤ 1 

Exercises (2.5.2): Test the convergence of the following. 

! 

1)2) 
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Exercises (2.5.3): Find all value of x for which the given series converge: 

1)  2)  

2.6 Power Series: 

Definition (2.6.1): Power series are defined by: 

 in which the center a and the 

coefficients C0 , C1 , C2 , ··· , Cn , ··· are constant. 

Theorem (2.6.1): 
∞ 

Let XCn(x − a)n, be any power series, where k ≥ 0, then: 
n=k 

1) The series converge only when x = a. 

2) The series converge for all x. 

3) There is a number < > 0 such that the series is convergent if |x − a| < < and it is divergent 

if |x − a| > <. And may converge or diverge when |x − a| = <. This number < is called the 

radius of convergence. And the interval of convergence is (−< + a,< + a). 

Example (1): Test the convergence of the series Solution: 

 



CALCULUS I JI≪≫JIJI≪≫JI Dr. Mayada Gassab Mohammed j90 

 

⇒ The series is divergent for all x 6= 1 and when x = 1 the sum of the series is 0. In this 

case we say the radius of convergence is 0 (< = 0) and the interval of convergence is the 

point x = 1. 

Example (2): Test the convergence of the series Solution: 

 

The series is convergent for all x and the radius of convergence is (< = ∞) and the interval of 

convergence is (−∞,∞). 

Example (3): Test the convergence of the series  

Solution: 

 

The series is convergent if  

and it is divergent if . The radius of convergence is 

. To find the interval of convergence we need to examine the end points  and 

 

when  convergent by p − test 

when  absolutely convergent and therefore con- 

vergent. 
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Hence, the interval of convergence is  

Exercises (2.6.1): Test the convergent of the following. 

1)  2)  3)  

2.7 Representation of Function by Power Series: 

 

Example (1): Represent the following function by power series: 

1)  2)  

Solution: 

1)  for | − x| < 1 

 

2)  for  

Theorem (2.7.1): 
∞ 

Suppose that the function f(x) can be representation by power series XCnxn, then 
n=0 
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1) 

2) 

Example (2): Represent the following function by power series f(x) = tan−1(x) Solution: 

Since  for | − x2| < 1 

 

 for |x| < 1 

2.8 Taylor and Maclaurin Series: 

Definition (2.8.1): Taylor series of a function It is a 
power series centered at a. 

Definition (2.8.2): Maclaurin series of a function f(x) is a Taylor series at x = 0. 

 

where fn is the derivative of f with n degree and f(0) = f & 0! = 1 

Example (1): Find the maclaurin expansion of f(x) = sin(x) 
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Solution: 

 

 
Example (2): Find the maclaurin expansion of f(x) = ex Solution: 
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Exercises (2.8.1): Find the maclaurin expansion of the following functions. 

1) f(x) = cos(x) 2) f(x) = sin(x2) 3)  4) f(x) = x2ex 

Example (3): Find the taylor expansion of  

Solution: 

 

 

Example (4): Find the taylor expansion of Solution: 
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Exercises (2.8.2): 

1) Find the taylor expansion of  

2) Find the taylor expansion of f(x) = e−x at a = 0 

JI≪ • ≫JI 


