CALCULUS /

Thi-QarUniversity
College of Education for Pure sciences

Dr. Mayada Gassab Mohammed

Mathematics Department

1. Sets:

\sim Natural Numbers $N=\{1,2,3, \cdots\}$
\sim Integers Numbers $Z=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}=Z^{-} \cup\{0\} \cup Z^{+}$
\sim Rational Numbers $\mathbb{Q}=\left\{\frac{a}{b}: a, b\right.$ are integers numbers and $\left.b 6=0\right\}$ $\sqrt{ }$
\sim Irrational Numbers I: Such as 2 and π are numbers which are not rational.
\sim Real Numbers R: The set of rational and irrational numbers $(R=Q \cup I)$. $\sqrt{ }$
\sim Complex Numbers $C=\{x+y i: x, y$ are real numbers and $i=-1\}$ Clearly, $N \subseteq Z \subseteq Q \subseteq R \subseteq C$

2. Operations With Real Numbers:

If a, b and c are real numbers, then:

1) $a+b \in \mathrm{R}$ and $a \times b \in \mathrm{R}$ (Closure law)
2) $a+b=b+a$ (Commutative law of addition)
3) $a \times b=b \times a$ (Commutative law of multiplication)
4) $a+(b+c)=(a+b)+c$ (associative law of addition)
5) $a \times(b \times c)=(a \times b) \times c$ (associative law of multiplication)
6) $a \times(b+c)=a \times b+a \times c$ (distributive law)
7) $a+0=0+a=a(0$ is called the identity with respect to addition) $a \times 1=1 \times a=a$
(1 is called the identity with respect to multiplication)
8) For any a there is a number $x \in \mathrm{R}$ such that $x+a=a+x=0, x$ is called the inverse of a with respect to addition and is denoted by $-a$.
9) For any $a 6=0$ there is a number $x \in \mathrm{R}$ such that $x \times a=a \times x=1, x$ is called the inverse of a with respect to multiplication and is denoted by a^{-1} or $\frac{1}{a}$.

3. Types of Intervals:

Interval Notation	Set definition	Name	Region on the Real Number Line	
(a, b)	$\{x: a<x<b\}$	Open	\qquad	\xrightarrow{b}
[a,b]	$\{x: a \leq x \leq b\}$	Closed		\xrightarrow{b}
[a,b)	$\{x: a \leq x<b\}$	Half Open	\qquad	$\xrightarrow{\substack{b \\ \xrightarrow{\longrightarrow}}}$
(a, b]	$\{x: a<x \leq b\}$	Half Open	$\begin{array}{r} a \\ \longleftarrow \end{array}$	\xrightarrow{b}
(a, ∞)	$\{x: x>a\}$	Open	\qquad	
$[a, \infty)$	$\{x: x \geq a\}$	Closed	\qquad	
$(-\infty, b)$	$\{x: x<b\}$	Open		\xrightarrow{b}
$(-\infty, b]$	$\{x: x \leq b\}$	Closed		b
$(-\infty, \infty)$	R	Open and Closed	\longleftarrow	

4. Inequalities:

If $a-b$ is a nonnegative number, we say that a is greater than or equal to b or b is less than or equal to a, and write, respectively $a \geq b$ or $b \leq a$. If there is no possibility that a $=b$, we write $a>b$ or $b<a$.

Theorem (4.1):

If a, b, c and d are any real numbers, then:

1) If $a<b$ and $b<c$, then $a<c$

$$
\text { e.g., } 4<5 \text { and } 5<7 \Rightarrow 4<7
$$

2) If $a<b$, then $a \pm c<b \pm c$
e.g., $10<13 \Rightarrow 10+3<13+3$ and $10-3<13-3$

$$
a \times c<b \times c\}
$$

3) If $a<b$, then $\left.-\frac{a}{c}<\begin{array}{l}b \\ c\end{array}\right\}$ when $c>0$
e.g., $10<20 \Rightarrow 10 \times 3<20 \times 3 \Rightarrow 30<60$

$$
\Rightarrow \frac{10}{5}<\frac{20}{5} \Rightarrow 2<4
$$

$$
\text { 4) If } \left.a<b \text {, then } \frac{a}{c}>\frac{b}{c}\right\}_{\text {when } c<0}
$$

e.g., $10<20 \Rightarrow 10 \times-2>20 \times-2 \Rightarrow-20>-40$

$$
\Rightarrow \frac{10}{-2}>\frac{20}{-2} \Rightarrow-5>-10
$$

5) If $a<b$, then $>\frac{1}{a} \quad \frac{1}{b}$
e.g., $3<5 \Rightarrow \frac{1}{3}>\frac{1}{5}$
6) If $a<b$ and $c<d$, then $a+c<b+d$ e.g., $3<5$ and $6<9 \Rightarrow 3+6<5+9$

Example (4.1): Find the solution set of the following inequalities.

1) $3+2 x<7$

Solution:

$\Rightarrow 3+2 x-3<7-3 \Rightarrow 2 x<4 \Rightarrow \frac{2 x}{\mathrm{Z}}<\frac{4}{2} \Rightarrow x<2$
\therefore The solution $=\{x: x<2\}=(-\infty, 2)$
2) $2-3 x<4+2 x$

Solution:

$2-{ }^{2} 3 z x+{ }^{2} 3 z x<4+2 x+3 x$ (adding to both sides $+3 x$)
$\Rightarrow 2<4+5 x \Rightarrow 2-4<s 4+5 s x-s 4$ (sadding to both sides -4$)$
$-2<5 x \Rightarrow \frac{-2}{5}<\frac{5 x}{5}$
$\Rightarrow \frac{-2}{5}<x$
(dividing both sides by 5)
\therefore The solution $=\left\{x: x>\frac{-2}{5}\right\}=\left(\frac{-2}{5}, \infty\right)$
3) $2<3 x-1 \leq 11$

Solution:

$\Rightarrow 2+1<3 x-1+1 \leq 11+1$
$\Rightarrow 3<3 x \leq 12 \Rightarrow \frac{3}{3}<\frac{3 x}{3} \leq \frac{12^{4}}{3^{4}} \Rightarrow 1<x \leq 4$
\therefore The solution $=\{x: 1<x \leq 4\}=(1,4]$
4) $\frac{2}{x}<\frac{1}{4}, x \neq 0$ Solution:
x may be positive or negative.
Case 1: If $x>0$
$\Rightarrow \frac{2}{\vec{x}} \times \overrightarrow{{ }^{3}}<\frac{1}{4} \times x \Rightarrow 2<\frac{x}{4} \Rightarrow 2 \times 4<\frac{x}{4} \times 4 \Rightarrow 8<x$

\therefore The solution $=\{x: x>8\}=(8, \infty)$
Case 2: If $x<0$
$\Rightarrow \frac{2}{\vec{x}} \times \vec{n}>\frac{1}{4} \times x \Rightarrow 2>\frac{x}{4} \Rightarrow 2 \times 4>\frac{x}{4} \times 4 \Rightarrow 8>x$ $\xrightarrow{0}$
\therefore The solution $=\{x: x<0\}=(-\infty, 0)$
\therefore The general solution is $(-\infty, 0) \cup(8, \infty)$
5) $\frac{x-7}{x+3}>2, x \neq-3$

Solution:

Case 1: If $\left.x+3>0 \Rightarrow x>-3 x-7^{x x}+3\right) x x>2(x+3) \Rightarrow x-7>2 x+6 \Rightarrow x-2 x$

$$
\begin{aligned}
& >6+7 \Rightarrow-x>13 \\
\Rightarrow & x x+3_{x x}\left({ }^{x} x_{x}\right. \\
\Rightarrow & x<-13 \text { this is false. }
\end{aligned}
$$

Case 2: If $\left.x+3<0 \Rightarrow x<-3 x-7^{x x}+3\right) \mathrm{xx}<2(x+3) \Rightarrow x-7<2 x+6 \Rightarrow x-2 x$

$$
<6+7 \Rightarrow-x<13
$$

$$
\Rightarrow{ }_{x x}+3_{x x}\left({ }^{X} x\right.
$$

$$
\Rightarrow x>-13
$$

\therefore The solution is $=\{x:-13<x<-3\}=(-13,-3)$
\therefore The general solution is $=\{x:-13<x<-3\}=(-13,-3)$

Exercises (4): Solve the following inequalities:

1) $\frac{x+4}{x-3}<2$
2) $\frac{-x}{x+5}<1$
3) $x^{2}-6 x+5>0$
4) $(x-1)^{2}(x+4)<0$
5) $5 x-2 x^{2}>0$

5. Absolute Value:

Definition (5.1): If x and y any real numbers, then:

Properties:

1) $|-x|=|x|$

$$
\begin{aligned}
& \left.\left|\frac{x}{y}\right|=\frac{|x|}{|y|} \quad, \quad y \neq 0 \quad 2\right) \quad|x y|=|x||y| \\
& |x|=\sqrt{x^{2}}
\end{aligned}
$$

3)
4)
5) $|x+y| \leq|x|+|y|$
6) $|x-y| \geq|x|-|y|$
7) $-|a| \leq a \leq|a|$
8) If $|x| \leq a$, then $-a \leq x \leq a$
9) If $|x| \geq a$, then $x \leq-a \underline{\text { or } x \geq a}$

Example (5.1):

1) $|4-8|=|-4|=4$
2) $|4|+|-3|=4+3=7$
3) $|4-8|=|4+(-8)| \leq|4|+|-8|$
4) $|4+8|=|4-(-8)| \geq|4|-|-8|$

Example (5.2): Solve $\left|x+\frac{1}{x}\right|>2, x \neq 0$
Solution:
$\Rightarrow\left|\frac{x^{2}+1}{x}\right|>2 \Rightarrow \frac{\left|x^{2}+1\right|}{|x|}>2\left(\right.$ Since $\left.x^{2}+1>0\right)$
$\Rightarrow \frac{x^{2}+1}{|x|}>2 \Rightarrow x^{2}+1>2|x| \Rightarrow x^{2}-2|x|+1>0$
$\Rightarrow|x|^{2}-2|x|+1>0\left(\right.$ Since $\left.x^{2}=|x|^{2}\right)$
$\Rightarrow(|x|-1)^{2}>0,|x| 6=1$
\therefore The solution is the set of real number except $x=1, x=-1$ and $x=0 \therefore$ The solution is $=(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty)$

Example (5.3): Solve $|x+3| \leq 5$

Solution:

$|x+3| \leq 5$ if and only if $-5 \leq x+3 \leq 5$
$\Rightarrow-5-3 \leq x^{H}+3$ H $^{H}-н 3 \leq 5-3 \Rightarrow-8 \leq x \leq 2$
\therefore The solution is $=\{x:-8 \leq x \leq 2\}=[-8,2]$

Exercises (5): Solve the following inequalities:

1) $|2 x-3|<|x+2|$
2) $|2 x+1|>2$
3) $|5-3 x|<2$

6. Functions:

Definition (6.1): A relation $f: X \rightarrow Y$ is called function if and only if for each element $x \in X$, there exist a unique element $y \in Y$ such that $y=f(x)$.
\sim The variable x in a function $y=f(x)$ is called the independent variable of the function f. The variable y whose value dependent on x, is called dependent variable of the function f.
\sim If $y=f(x)$, then the set of all possible inputs ($x-$ values) is called the domain of f and denoted by D_{f} or $\operatorname{Dom}(f)$.

And the set of outputs (y-values) that result when x varies over the domain is called the range of f and denoted by R_{f} or $\operatorname{Ran}(f)$.

Example (6.1): Find the domain and range of the following functions:

1) $f(x)=x-2$
2) $f(x)=x^{2}-4$
3) $D_{f}=R$ and R_{f}
$=R$
4) $f(x)=|x|$
5) $f(x)=\frac{x^{2}-4}{x+2}$
6) $D_{f}=R$

Solution:

$$
\begin{aligned}
& \text { Let } y=x^{2}-4 \\
& \Rightarrow x^{2}=y+4
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x=\mp \mathrm{p}_{y}+4 \\
& \text { If } y+4 \geq 0 \Rightarrow y \geq-4 \\
& \therefore R_{f}=[-4, \infty)
\end{aligned}
$$

3) $f(x)=\sqrt[{\sqrt{ }}]{x-2}$
4)

$$
f(x)=\frac{1}{(x-2)(x-3)}
$$

3) $x-2 \geq 0 \Rightarrow x \geq 2$
$\therefore D_{f}=[2, \infty)$ and $R_{f}=[0, \infty)$
4) $D_{f}=R$ and $R_{f}=[0, \infty)$
5) $x+2=0 \Rightarrow x=-2$
$\therefore D_{f}=(-\infty,-2) \cup(-2, \infty) x^{2}-4(x-$

$$
\text { 2) }\left(x^{x} x^{x}+2\right) x x
$$

Since $f(x)=\overline{x+2=} \quad=x-2$ for x 6 $=-2$
$\Rightarrow f(x)=x-2$
$\Rightarrow y=x-2 \Rightarrow y=-2-2=-4$
$\therefore R_{f}=(-\infty,-4) \cup(-4, \infty)$
6) $D_{f}=(-\infty, 2) \cup(2,3) \cup(3, \infty)$

Let

$$
\begin{aligned}
& y=\frac{1}{(x-2)(x-3)} \Rightarrow y=\frac{1}{x^{2}-5 x+6} \Rightarrow y\left(x^{2}-5 x+6\right)=1 \\
& \Rightarrow x^{2}-5 x+6=\frac{1}{y} \Rightarrow x^{2}-5 x+\left(6-\frac{1}{y}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x=\frac{5 \pm \sqrt{25-4\left(6-\frac{1}{y}\right)}}{2}=\frac{5 \pm \sqrt{25-24+\frac{4}{y}}}{2}=\frac{5 \pm \sqrt{1+\frac{4}{y}}}{2} \\
& \text { If } 1+\frac{4}{y} \geq 0 \Rightarrow \frac{4}{y} \geq-1
\end{aligned}
$$

Case 1: If $y>0$

$$
\Rightarrow 4 \geq-y \Rightarrow y \geq-4 \Rightarrow(0, \infty)
$$

Case 2: If $y<0$

$$
\begin{aligned}
& \Rightarrow 4 \leq-y \Rightarrow y \leq-4 \Rightarrow(-\infty,-4] \\
& \therefore R_{f}=(-\infty,-4] \cup(0, \infty)
\end{aligned}
$$

Example (6.2): Find the domain of the following functions:

1) $f(x)=\frac{3 x}{x^{2}-4 x-12}$
2) $f(x)=\frac{\sqrt{x-1}}{x^{2}+4}$
3) $f(x)=\frac{1}{\sqrt{x^{2}-4}}$

Solution:

1) $x^{2}-4 x-12=0 \Rightarrow(x-6)(x+2)=0 \Rightarrow x=6, x=-2$

$$
\therefore D_{f}=(-\infty,-2) \cup(-2,6) \cup(6, \infty)
$$

2) $x-1 \geq 0 \Rightarrow x \geq 1$

$$
\therefore D_{f}=[1, \infty)
$$

3) $x^{2}-4>0 \Rightarrow x^{2}>4$ this is true if $x<-2$ or $x>2$

$$
\therefore D_{f}=(-\infty,-2) \cup(2, \infty)
$$

Exercises (6.1): Find D_{f} and R_{f} of the following functions:

1) $f(x)=-x^{2}+4$
2) $f(x)=\begin{array}{r}\sqrt{-}_{-} \\ x\end{array}$
3) $f(x)=\sin (x)$
4) $f(x)=\cos ^{2}(x)$

Exercises (6.2): Find D_{f} of the following functions:
?

$$
f(x)=\frac{|x|}{x}
$$

20 3-x if $x \leq 1$

1) $f(x)=$

$$
\text { 团 } 5 x-3 \text { if } \quad x>1
$$

Definition (6.2): Let $f(x)$ be a function with domain D_{f} and $g(x)$ be a function with domain D_{g} and define:

$$
D=D_{f} \cap D_{g}, \text { then: }
$$

1) $(f+g)(x)=f(x)+g(x)$ with domain D
2) $(f-g)(x)=f(x)-g(x)$ with domain D
3) $(f \cdot g)(x)=f(x) \cdot g(x)$ with domain D
4) $(f / g)(x)=f(x) / g(x)$ with domain D and $g(x) 6=0$

$$
\sqrt{-}-2 \text { and } g(x)=x-3, \text { find }(f+g)(x),(f-g)(x)
$$

Example (6.3): Let $f(x)=1+$
$,(f . g)(x),(f / g)(x)$ and state the domain of $f+g, f-g, f \cdot g, f / g$.

Solution:

1) $(f+g)(x)=f(x)+g(x)=1+x-2+x-3=x-2+x-2$
2) $(f-g)(x)=f(x)-g(x)=1+x-2-x+3=4-x+x-2$

3) $(f \cdot g)(x)=f(x) \cdot g(x)=(1+$

$$
\begin{aligned}
& (f / g)(x)=f(x) / g(x)=\frac{1+\sqrt{x-2}}{x-3} \\
& \because f(x)=1+\sqrt{x-2} \Rightarrow x-2 \geq 0 \Rightarrow x \geq 2 \\
& \therefore D_{f}=[2, \infty)
\end{aligned}
$$

4) $\because g(x)=x-3$

$$
\begin{aligned}
& \therefore D_{g}=(-\infty, \infty) \\
& \therefore D=D_{f} \cap D_{g}=[2, \infty) \cap(-\infty, \infty)=[2, \infty) \\
& \therefore \operatorname{Dom}(f+g, f-g, f \cdot g)=D=[2, \infty)
\end{aligned}
$$

$$
\operatorname{Dom}(f / g)=[2,3) \cup(3, \infty)
$$

$$
\sqrt{ } \quad \sqrt{ }
$$

Exercises (6.3): Let $f(x)=2 x-1$ and $g(x)=x-1$ find the domain of $f+g, f-g, f . g$, and f / g.

7. Composition of Function:

Definition (7.1): The composition function $(f \circ g)$ defined by $(f \circ g)(x)=f(g(x))$ the notation $(f \circ g)$ is read (f follows g or the composition of f and g). $f: X \rightarrow Y, g: Y \rightarrow Z \Rightarrow f \circ g: X \rightarrow Z$

Example (7.1): Let $f(x)=2 x+1$ and $g(x)=x^{2}-x$ find $(f \circ g)(x)$ and $(g \circ f)(x)$.
Solution:

$$
\text { 1) }(f \circ g)(x)=f(g(x))=f\left(x^{2}-x\right)=2\left(x^{2}-x\right)+1=2 x^{2}-2 x+1
$$

2) $(g \circ f)(x)=g(f(x))=g(2 x+1)=(2 x+1)^{2}-(2 x+1)$

Example (7.2): Let $f(x)=\sqrt{x}-3$ and $g(x)=\mathrm{p}_{x^{2}}+3$ find $(f \circ g)(x)$ and $(g \circ f)(x)$.
Solution:

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(\sqrt{x^{2}+3}\right)=\sqrt{\sqrt{x^{2}+3}-3} \\
& (g \circ f)(x)=g(f(x))=g(\sqrt{x-3})=\sqrt{(\sqrt{x-3})^{2}+3}=\sqrt{x-3+3}=\sqrt{x}
\end{aligned}
$$

1)
2)

Exercises (7): Find $(f \circ g)(x)$ and $(g \circ f)(x)$ for the following:

$$
\ldots \sqrt{ }
$$

2

1) $f(x)=x, g(x)=1-x$

$$
f(x)=\frac{1+x}{1-x}, g(x)=\frac{x}{1-x}
$$

$$
f(x)=\frac{x}{1+x^{2}}, g(x)=\frac{1}{x}
$$

2)
3)

8. Graph of a Function:

A function f establishes a set of ordered pairs (x, y) of real number. The plot of these pairs $(x, f(x))$ in a coordinate system is the graph of f.

Example (8.1): Sketch a graph of the function $f(x)=$ x^{2}

Solution:
$D_{f}=\mathrm{R}$

x	-4	-	-	-	0	1	2	3	4	Make a table values of x from the
y	16	9	4	1	0	1	4	9	16	domain. Example

(8.2): Sketch a graph of the
function $f(x)=\sqrt{ } \frac{4-x}{}$

Solution:

$$
4-x \geq 0 \Rightarrow 4 \geq x \Rightarrow D_{f}=(-\infty, 4]
$$

x	4	3.75	3	2	0	-2	Make a table values of x from the domain.
y	0	0.5	1	1.4	2	2.4	

Example (8.3): Sketch a graph of the

T]

function $f(x)=\quad x^{2}$

$$
\text { ? } 2 \text { 团团 } 1 \text { if } \quad x>1
$$

$$
\{-x \quad \text { if } \quad x<0
$$

Solution:
$D_{f}=\mathrm{R}$

x	-	-	-	-	0	0.5	1	2	3	4
	4	3	2	1						
y	4	3	2	1	0	0.25	1	1	1	1

Make a table values of x from the domain.

$f(x)=x^{2}-2$

9. Even Functions and Odd Functions:

Definition (9.1): A function $y=f(x)$ is an even function of x if $f(-x)=f(x)$ for every x in the function's domain. It is odd function of x if $f(-x)=-f(x)$ for every x in the function's domain.

Example (9.1): $f(x)=x^{2}$ is even function since $f(-x)=(-x)^{2}=x^{2}=f(x)$

$$
f(x)=x^{3} \text { is odd function since } f(-x)=(-x)^{3}=-x^{3}=-f(x)
$$

10. Test of Symmetric:

To test for various kinds of symmetry we state the following rules:
i. about x - axis replace y by $-y(-y-\rightarrow y)$ in its equation produces an equivalent equation.
ii. about y - axis replace x by $-x(-x \rightarrow x)$ in its equation produces an equivalent equation.
iii. about the origin point
replace x by $-x$ and y by $-y(-x \rightarrow x \wedge-y \rightarrow y)$ in its equation produces an equivalent equation.

Definition (10.1): A line $y=b$ is a horizontal asymptote of the graph of the relation if the distance between the curve and the line $y=b$ tends to zero as the curve continuous upwards beyond all bound.

Definition (10.2): A line $x=a$ is a vertical asymptote of the graph of the relation if the distance between the curve and the line $x=a$ tends to zero as the curve continuous upwards beyond all bound.
~ To test a horizontal asymptote, we flow the following:

1) We solve x in terms of y.
2) If x is given of form $x=\frac{r(y)}{t(y)}$ and find all those values of y for which $t(y)=0$ and $r(y)$ $6=0$ then the values of y which satisfy $t(y)=0$ are horizontal asymptotes of the graph.
~ To test a vertical asymptote, we flow the following:
3) We solve y in terms of x.
4) If y is given of form $y=\frac{g(x)}{h(x)}$ and find all those values of x for which $h(x)=0$ and $g(x) 6=0$ then the values of x which satisfy $h(x)=0$ are vertical asymptotes of the graph.

Example (10.1): Sketch a graph of the following functions:

1) $\left(x^{2}-4\right) y^{2}=1$
2) $x^{2} y=x-3$ (H.W)

Solution 1: $\operatorname{Dom}=(-\infty,-2) \cup(2, \infty)$ Test of Symmetric:
i. about $x-$ axis $(-y-\rightarrow y) \Rightarrow\left(x^{2}-4\right)(-y)^{2}$
$=1 \Rightarrow\left(x^{2}-4\right) y^{2}=1 \therefore$ Symmetric about
x-axis.
ii. about $y-$ axis $(-x \rightarrow x) \Rightarrow\left((-x)^{2}-\right.$ 4) $y^{2}=1 \Rightarrow\left(x^{2}-4\right) y^{2}=1 \therefore$ Symmetric about y-axis.
iii. From (i) and (ii) we get symmetric about the origin point.

Test of Asymptotes:

1) $\left(x^{2}-4\right) y^{2}=1 \Rightarrow x^{2} y^{2}-4 y^{2}=1 \Rightarrow x^{2} y^{2}=1+4 y^{2} \Rightarrow x= \pm \frac{\sqrt{1+4 y^{2}}}{y}$ $\Rightarrow y=0$ is a horizontal asymptote.
2) $\left(x^{2}-4\right) y^{2}=1 \Rightarrow y= \pm \frac{1}{\sqrt{x^{2}-4}} \Rightarrow$ If $\sqrt{x^{2}-4}=0 \Rightarrow x^{2}-4=0 \Rightarrow x= \pm 2$
$\therefore x=2$ and $x=-2$ are vertical asymptotes.

x	-4	-3	-2.5	-2.25	-2.1	2.1	2.25	2.5	3	4
y	± 0.28	± 0.44	± 0.66	± 0.97	± 1.5	± 1.5	± 0.97	± 0.66	± 0.44	± 0.28

11. Greatest Integer Function:

For Example:

$$
\begin{array}{ll}
f(0.5)=[0.5]=0 & f(1.9)=[1.9]=1 f(2.4)=[2.4] \\
=2 & f(-1.2)=[-1.2]=-2
\end{array}
$$

12. Trigonometric Functions:

$$
\begin{aligned}
& \left.\sin (\theta)=\frac{y}{r} \quad 1\right) \\
& \cos (\theta)=\frac{x}{r} \\
& \text { 2) } \\
& \tan (\theta)=\frac{y}{x}=\frac{\frac{y}{r}}{\frac{x}{r}}=\frac{\sin (\theta)}{\cos (\theta)} \\
& \text { 3) } \\
& \text { 4) } \\
& \sec (\theta)=\frac{r}{x}=\frac{1}{\cos (\theta)} \\
& \theta)={ }_{y}^{x}=\frac{r}{y}=\frac{\cos (\theta)}{\sin (\theta)} \\
& \text { 5) - } \\
& \csc (\theta)=\begin{array}{r}
r \\
y
\end{array}=\frac{1}{\sin (\theta)} \\
& \text { 6) - } \\
& \text { 7) } \because x^{2}+y^{2}=r^{2} \Rightarrow \frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}=1 \Rightarrow \cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \\
& \text { 8) } \because x^{2}+y^{2}=r^{2} \Rightarrow \frac{x^{2}}{y^{2}}+1=\frac{r^{2}}{y^{2}} \Rightarrow \cot ^{2}(\theta)+1=\csc ^{2}(\theta)
\end{aligned}
$$

9) $\because x^{2}+y^{2}=r^{2} \Rightarrow 1+\frac{y^{2}}{x^{2}}=\frac{r^{2}}{x^{2}} \Rightarrow 1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$

Definition (12.1): A function $f(x)$ is periodic with period $\rho>0$ if $f(x+\rho)=f(x)$ for every value of x.

Example (12.1): $f(x)=\sin (x), f(x)=\cos (x)$ are periodic function such that $\rho=2 \pi$ i.e:

$$
\sin (\theta)=\sin (\theta+2 \pi)
$$

$$
\cos (\theta)=\cos (\theta+2 \pi)
$$

In general:

$$
\begin{array}{lr}
\sin (\theta)=\sin (\theta+2 n \pi) & , n=\mp 1, \mp 2, \mp 3, \cdots \cos (\theta)= \\
\cos (\theta+2 n \pi) & , n=\mp 1, \mp 2, \mp 3, \cdots \text { Remark }(12.1):
\end{array}
$$

1) $\sin (-\theta)=-\sin (\theta)$ odd function.
2) $\cos (-\theta)=\cos (\theta)$ even function.
3) $\tan (-\theta)=-\tan (\theta)$ odd function.
4) $\cot (-\theta)=-\cot (\theta)$ odd function.
5) $\sec (-\theta)=\sec (\theta)$ even function.
6) $\csc (-\theta)=-\csc (\theta)$ odd function.

Properties of Trigonometric Functions:

$$
\begin{aligned}
& \sin \left(\theta+\frac{\pi}{2}\right)=\cos (\theta) \\
& \cos \left(\theta+\frac{\pi}{2}\right)=-\sin (\theta)
\end{aligned}
$$

1)
2)
3) $\sin (x \mp y)=\sin (x) \cos (y) \mp \sin (y) \cos (x)$
4) $\cos (x \mp y)=\cos (x) \cos (y) \pm \sin (x) \sin (y)$
5) $\sin (2 x)=2 \sin (x) \cos (x)$
6) $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$
7) $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}, \cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$
8) $\tan (x \mp y)=\frac{\tan (x) \mp \tan (y)}{1 \pm \tan (x) \tan (y)}$
9) $\sin (x) \sin (y)=\frac{1}{2}(\cos (x-y)-\cos (x+y))$
10) $\cos (x) \cos (y)=\frac{1}{2}(\cos (x+y)+\cos (x-y))$
11) $\sin (x) \cos (y)=\frac{1}{2}(\sin (x+y)+\sin (x-y))$

Example (12.2): Prove that $\frac{\cos (\theta)}{\sin (\theta) \cot (\theta)}=1$
Proof:
$\frac{\cos (\theta)}{\sin (\theta) \frac{\cos (\theta)}{\sin (\theta)}}=\frac{\left.x^{x} x \theta x\right)}{\cos (}=1$
Example (12.3): Prove that $\frac{\cos (\theta)}{1-\sin (\theta)}=\frac{1+\sin (\theta)}{\cos (\theta)}$ Proof:
$\frac{\cos (\theta)}{1-\sin (\theta)} \cdot \frac{1+\sin (\theta)}{1+\sin (\theta)}=\frac{\cos (\theta)(1+\sin (\theta))}{1-\sin ^{2}(\theta)}=\frac{\cos (\theta)(1+\sin (\theta))}{\cos ^{2}(\theta)^{\cos (\theta)}}=\frac{1+\sin (\theta)}{\cos (\theta)}$

$2 \cot (x)$ Example

(12.4): Solve $1+$ \qquad $\cot _{2}(x)$
Solution:
$\frac{2 \cot (x)}{1+\cot ^{2}(x)}=\frac{2 \cot (x)}{\csc ^{2}(x)}=\frac{\frac{2 \cos (x)}{\sin (x)}}{\frac{1}{\sin ^{2}(x)^{2 \sin (x)}}}=2 \cos (x) \sin (x)=\sin (2 x)$

Exercises (12): Prove that

$$
\begin{aligned}
& \frac{\tan ^{2}(\theta)+1}{\sec (\theta)}=\sec (\theta) \\
& \frac{\cos (\theta)+1}{\tan ^{2}(\theta)}=\frac{\cos (\theta)}{\sec (\theta)-1}
\end{aligned}
$$

1)
2)

$$
\begin{aligned}
& \frac{\tan (\theta)-\cot (\theta)}{\sin (\theta) \cos (\theta)} \\
& \frac{\sec ^{2}(\theta)-1}{\sec ^{2}(\theta)}=\sin ^{2}(\theta) \\
& \frac{\tan ^{2}(\theta) \csc ^{2}(\theta)-1}{\sec ^{2}(\theta)}=\sec (\theta)-\csc (\theta) \\
& \sin ^{2}(\theta)
\end{aligned}
$$

4)

5) Definition (12.2): If

the functions f and g satisfy the
two conditions:
i. $g(f(x))=x$ for every x in the domain of f.
ii. $f(g(y))=y$ for every y in the domain of g. then we call f an inverse function of g and g an inverse function for f.

13. Inverse of Trigonometric Functions:

1) If $y=\sin (x) \Rightarrow x=\sin ^{-1}(y)$ where $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2},-1 \leq y \leq 1$
2) If $y=\cos (x) \Rightarrow x=\cos ^{-1}(y)$ where $0 \leq x \leq \pi,-1 \leq y \leq 1$
3) If $y=\tan (x) \Rightarrow x=\tan ^{-1}(y)$ where $-\frac{\pi}{2}<x<\frac{\pi}{2}, \forall y \in \mathbb{R}$
4) If $y=\cot (x) \Rightarrow x=\cot ^{-1}(y)$ where $0<x<\pi, \forall y \in \mathrm{R}$
5) If $y=\sec (x) \Rightarrow x=\sec ^{-1}(y)$ where $0 \leq x<\frac{\pi}{2} \bigcup \frac{\pi}{2}<x \leq \pi,|y| \geq 1$
6) If $y=\csc (x) \Rightarrow x=\csc ^{-1}(y)$ where $-\frac{\pi}{2} \leq x<0 \bigcup 0<x \leq \frac{\pi}{2},|y| \geq 1$

Remark (13.1):

$$
\sin ^{-1}(x) \neq(\sin (x))^{-1}=\frac{1}{\sin (x)}
$$

Example (13.1): $\sin (90)=1 \Rightarrow \sin ^{-1}(\sin (90))=\sin ^{-1}(1) \Rightarrow \sin ^{-1}(1)=90$

Example (13.2): Find the exact values of $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$.
Solution:
Let $y=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \Rightarrow \sin (y)=\frac{1}{\sqrt{2}} \Rightarrow y=\frac{\pi}{4}$
Example (13.3): Find the exact values of $\sin ^{-1}\left(\frac{1}{2}\right)$.
Solution:
Let $y=\sin ^{-1}\left(\frac{1}{2}\right) \Rightarrow \sin (y)=\frac{1}{2} \Rightarrow y=\frac{\pi}{6}$

Lemma (13.1):

$$
\sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)
$$

Solution:

Let $y=\sec ^{-1}(x) \Rightarrow \sec (y)=x \Rightarrow \frac{1}{\cos (y)}=x \Rightarrow \cos (y)=\frac{1}{x} \Rightarrow y=\cos ^{-1}\left(\frac{1}{x}\right)$
$\Rightarrow \sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)$

Example (13.4): Prove that $\sin ^{-1}(x)+\cos ^{-1}(x)=\frac{\pi}{2}$
Proof:
$\sin ^{-1}(x)=\frac{\pi}{2}-\cos ^{-1}(x)$
Let $y=\frac{\pi}{2}-\cos ^{-1}(x) \Rightarrow \cos ^{-1}(x)=\frac{\pi}{2}-y \Rightarrow x=\cos \left(\frac{\pi}{2}-y\right) \Rightarrow x=\sin (y)$
$\Rightarrow y=\sin ^{-1}(x)$
$\Rightarrow \frac{\pi}{2}-\cos ^{-1}(x)=\sin ^{-1}(x) \Rightarrow \sin ^{-1}(x)+\cos ^{-1}(x)=\frac{\pi}{2}$

14. Exponential Functions:

A function of the form $f(x)=b^{x}$, where $b>0$ and $b 6=1$, is called an exponential function with base b.
$\sim D_{f}=\mathrm{R}$ and $R_{f}=(0, \infty)$

Properties of Exponential Functions:

1) $a_{x} \times a_{y}=a_{x+y}$
2) $\frac{a^{x}}{a^{y}}=a^{x-y}$
3) $\left(a_{x}\right)_{y}=a_{x y}$

$$
(a b)^{x}=a^{x} b^{x}
$$

$$
\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
$$

$$
a^{-x}=\frac{1}{a^{x}}
$$

4)
5)
6)
7) $a^{0}=1$
8) $a^{\frac{1}{x}}=\sqrt[x]{a}$
9) $a^{\infty}=\infty, a^{-\infty}=\frac{1}{a^{\infty}}=\frac{1}{\infty}=0$

Remark (14.1):
The function $f(x)=e^{x}$ is called the natural exponential function, such that $e=2.7$

15. Logarithmic Functions:

Is inverse of the exponential functions, $y=b^{x}$ is equivalent to $x=\log _{b} y$ if $y>0$ and x is any real number.
$\sim b$ is called the base of the logarithmic.
\sim If $b=10 \Rightarrow x=\log y$ common logarithmic.
\sim If $b=e \Rightarrow x=\log _{e} y=\ln (y)$ natural logarithmic.
\sim Domain of logarithmic function is $(0, \infty)$ and it is range is R.
Properties of Logarithmic Functions:

If $b>0, b 6=1, a>0, c>0$ and r is any real number, then

$$
\begin{aligned}
& \log _{b}(a c)=\log _{b} a+\log _{b} c \\
& \log _{b}\left(\frac{a}{c}\right)=\log _{b} a-\log _{b} c \\
& \log _{b} a^{r}=r \log _{b} a
\end{aligned}
$$

2)
3)

$$
\begin{aligned}
& \log _{b} 1=0 \\
& \log _{b}\left(\frac{1}{c}\right)=-\log _{b} c
\end{aligned}
$$

4)
5)
6) $\log _{b} x$ is undefine for $x<0$
7) $\log _{b} b=1$
8) $\ln \left(e^{x}\right)=x$ for every x
9) $e \ln (x)=x$
10) $\log _{b} x=\frac{\ln (x)}{\ln (b)}$
11) $\log _{b} b^{x}=x$ for every x

Example (15.1): Find $\log \frac{x y^{5}}{\sqrt{z}}$ Solution:
$\log \frac{x y^{5}}{\sqrt{z}}=\log \left(x y^{5}\right)-\log (\sqrt{z})=\log x+\log y^{5}-\log z^{\frac{1}{2}}$

$$
=\log x+5 \log y-\frac{1}{2} \log z
$$

Example (15.2): Find $\frac{1}{3} \ln (x)-\ln \left(x^{2}-1\right)+2 \ln (x+3)$
Solution:

$$
\begin{aligned}
\frac{1}{3} \ln (x)-\ln \left(x^{2}-1\right)+2 \ln (x+3) & =\ln (x)^{\frac{1}{3}}-\ln \left(x^{2}-1\right)+\ln (x+3)^{2} \\
& =\ln \left(x^{\frac{1}{3}}(x+3)^{2}\right)-\ln \left(x^{2}-1\right) \\
& =\ln \left(\frac{\sqrt[3]{x}(x+3)^{2}}{x^{2}-1}\right)
\end{aligned}
$$

Example (15.3): Find x such that

1) $\log x=2 \quad$ 5) $(x)^{\log (x)}=100 x$ (H.W)
2) $\ln (x+1)=5$
3) $5^{x}=7$
4) $\frac{e^{x}-e^{-x}}{2}=1(\mathcal{H} . \mathcal{W})$

Solution:

$\log x=2 \Rightarrow \frac{\ln (x)}{\ln (10)}=2 \Rightarrow \ln (x)=2 \ln (10) \Rightarrow \ln (x)=\ln (10)^{2} \Rightarrow e^{\ln (x)}=e^{\ln (100)}$

1) $\Rightarrow x=100$
2) $\ln (x+1)=5 \Rightarrow e^{\ln (x+1)}=e^{5} \Rightarrow x+1=e^{5} \Rightarrow x=e^{5}-1$
3) $5^{x}=7 \Rightarrow \ln \left(5^{x}\right)=\ln (7) \Rightarrow x \ln (5)=\ln (7) \Rightarrow x=\frac{\ln (7)}{\ln (5)}$

16. Hyperbolic Functions:

1) $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$ where $D_{f}=\mathrm{R}, R_{f}=\mathrm{R}$
2) $\cosh (x)=\frac{e^{x}+e^{-x}}{}$ where $D_{f}=\mathrm{R}, R_{f}=[1, \infty)$

2
3) $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{\sinh (x)}{\cosh (x)}$ where $D_{f}=\mathrm{R}, R_{f}=(-1,1)$

$$
x)=\frac{e+e}{e^{x}-e^{-x}}=\frac{1}{\tanh (x)} \text { 4) } \quad \begin{aligned}
& x \\
& \operatorname{coth}\left(\text { where } D_{f}=\mathrm{R} \backslash\{0\}, R_{f}=\mathrm{R} \backslash(-1,1)\right.
\end{aligned}
$$

5) $\operatorname{sech}(x)=\frac{2}{e^{x}+e^{-x}}=\frac{1}{\cosh (x)}$ where $D_{f}=\mathrm{R}, R_{f}=(0,1]$
6) $\operatorname{csch}(x)=\frac{2}{e^{x}-e^{-x}}=\frac{1}{\sinh (x)}$ where $D_{f}=\mathbf{R} \backslash\{0\}, R_{f}=\mathrm{R} \backslash\{0\}$
7) $\cosh ^{2}(x)-\sinh ^{2}(x)=1$ Proof:

$$
\begin{aligned}
\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} & =\frac{\left(e^{x}+e^{-x}\right)^{2}}{4}-\frac{\left(e^{x}-e^{-x}\right)^{2}}{4} \\
& =\frac{e^{2 x}+2+e^{-2 x}}{4}-\frac{e^{2 x}-2+e^{-2 x}}{4} \\
& =\frac{e^{2 x}+2+e^{-2 x}-e^{2 x}+2-e^{-2 x}}{4}=\frac{4}{4}=1
\end{aligned}
$$

8) $1-\tanh ^{2}(x)=\operatorname{sech}^{2}(x)$
9) $\operatorname{coth}^{2}(x)-1=\operatorname{csch}^{2}(x)$

Remark (16.1):

1) $\sinh (-x)=\frac{e^{-x}-e^{-(-x)}}{2}=\frac{e^{-x}-e^{x}}{2}=\frac{-\left(e^{x}-e^{-x}\right)}{2}=-\sinh (x)$ odd function.
2) $\cosh (-x)=\frac{e^{-x}+e^{-(-x)}}{2}=\frac{e^{-x}+e^{x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh (x)$ even function.
3) $\tanh (-x)=-\tanh (x)$ odd function.
4) $\operatorname{coth}(-x)=-\operatorname{coth}(x)$ odd function.
5) $\operatorname{sech}(-x)=\operatorname{sech}(x)$ even function.
6) $\operatorname{csch}(-x)=-\operatorname{csch}(x)$ odd function.

Properties of Hyperbolic Function:

1) $\sinh (x \mp y)=\sinh (x) \cosh (y) \mp \sinh (y) \cosh (x)$

$$
\begin{aligned}
& \cosh (x \mp y)=\cosh (x) \cosh (y) \mp \sinh (x) \sinh (y) \\
& \tanh (x \mp y)=\frac{\tanh (x) \mp \tanh (y)}{1 \mp \tanh (x) \tanh (y)}
\end{aligned}
$$

2)
3)
4) $\sinh (2 x)=2 \sinh (x) \cosh (x)$
5) $\cosh (2 x)=\sinh ^{2}(x)+\cosh ^{2}(x) \quad$ or $=2 \sinh ^{2}(x)+1$

$$
\text { or }=2 \cosh ^{2}(x)-1
$$

$$
\sinh ^{2}(x)=\frac{\cosh (2 x)-1}{2}
$$

$$
\cosh ^{2}(x)=\frac{\cosh (2 x)+1}{2}
$$

6)
7)

Example (16.1): Let $\cosh (x)=5, x>0$, find $\sinh (x), \tanh (x), \operatorname{coth}(x), \operatorname{sech}(x)$ and $\operatorname{csch}(x)$ Solution:
$\because \cosh ^{2}(x)-\sinh ^{2}(x)=1 \Rightarrow 25-\sinh ^{2}(x)=1 \Rightarrow \sinh ^{2}(x)=25-1 \Rightarrow \sinh (x)=$
$\therefore \tanh (x)=\frac{\sinh (x)}{\operatorname{los}(x)}=\frac{\sqrt{ } 24}{5}, \operatorname{coth}(\cosh (x) \quad 5-$

$$
\begin{aligned}
& x)= \\
& \sinh (x) \quad \neq \not-24
\end{aligned}
$$

$\therefore \operatorname{sech}(x)=\frac{1}{\cosh (x)}=\frac{1}{5} \quad, \quad \operatorname{csch}(x)=\frac{1}{\sinh (x)}=\frac{1}{\sqrt{24}}$

Example (16.2): Prove that

1) $\cosh (x)+\sinh (x)=e^{x}$
2) $\cosh (x)-\sinh (x)=e^{-x}$ (H.W) Proof:
$\frac{e^{x}+e^{-x}}{2}+\frac{e^{x}-e^{-x}}{2}=\frac{e^{x}+e^{-x}+e^{x}-e^{-x}}{2}=\frac{2 e^{x}}{2}=e^{x}$
Example (16.3): Prove that $\tanh \left({ }^{\left.\frac{1}{2} \ln (x)\right)}=\frac{x-1}{x+1}\right.$
Proof:

$$
\begin{aligned}
\tanh \left(\frac{1}{2} \ln (x)\right)= & \frac{e^{\frac{1}{2} \ln (x)}-e^{-\frac{1}{2} \ln (x)}}{e^{\frac{1}{2} \ln (x)}+e^{-\frac{1}{2} \ln (x)}}=\frac{e^{\ln \left(x^{\frac{1}{2}}\right)}-e^{\ln \left(x^{-\frac{1}{2}}\right)}}{e^{\ln \left(x^{\frac{1}{2}}\right)}+e^{\ln \left(x^{-\frac{1}{2}}\right)}}=\frac{e^{\ln (\sqrt{x})}-e^{\ln \left(\frac{1}{\sqrt{x}}\right)}}{e^{\ln (\sqrt{x})}+e^{\ln \left(\frac{1}{\sqrt{x}}\right)}}=\frac{\sqrt{x}-\frac{1}{\sqrt{x}}}{\sqrt{x}+\frac{1}{\sqrt{x}}} \\
& =\frac{\frac{x-1}{\sqrt{x}}}{\frac{x+1}{\sqrt{x}}}=\frac{x-1}{x+1}
\end{aligned}
$$

Example (16.4): Prove that

1) $\tanh (x+y)=\frac{\tanh (x)+\tanh (y)}{1+\tanh (x) \tanh (y)}$

$$
\begin{equation*}
2 \tanh (x) \tag{H.W}
\end{equation*}
$$

2) $\tanh (2 x)=\frac{1}{1+\tanh (x)}^{2}$

Proof:

$$
\begin{aligned}
\frac{\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}}{1+\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}} & =\frac{\frac{\left(e^{x}-e^{-x}\right)\left(e^{y}+e^{-y}\right)+\left(e^{y}-e^{-y}\right)\left(e^{x}+e^{-x}\right)}{\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)}}{\left.\frac{\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)+\left(e^{x}-e^{-x}\right)\left(e^{y}-e^{-y}\right)}{\left(e^{x}+e^{-x}\right.}\right)\left(e^{y}+e^{-y}\right)} \\
& =\frac{e^{x+y}+e^{x-y}-e^{y-x}-e^{-(x+y)}+e^{x+y}+e^{y-x}-e^{x-y}-e^{-(x+y)}}{e^{x+y+e^{x-y}+e^{y-x}}+e^{-(x+y)}+e^{x+y}-e^{x-y}-e^{y-x}+e^{-(x+y)}} \\
& =\frac{2 e^{x+y}-2 e^{-(x+y)}}{2 e^{x+y}+2 e^{-(x+y)}}=\frac{e^{x+y}-e^{-(x+y)}}{e^{x+y}+e^{-(x+y)}}=\tanh (x+y)
\end{aligned}
$$

17. Inverse of Hyperbolic Functions:

1) If $y=\sinh (x) \Rightarrow x=\sinh ^{-1}(y)$ where $D_{f}=\mathrm{R}, R_{f}=\mathrm{R}$
2) If $y=\cosh (x) \Rightarrow x=\cosh ^{-1}(y)$ where $D_{f}=[1, \infty), R_{f}=[0, \infty)$
3) If $y=\tanh (x) \Rightarrow x=\tanh ^{-1}(y)$ where $D_{f}=(-1,1), R_{f}=R$
4) If $y=\operatorname{coth}(x) \Rightarrow x=\operatorname{coth}^{-1}(y)$ where $D_{f}=\mathrm{R} \backslash[-1,2], R_{f}=\mathrm{R} \backslash\{0\}$
5) If $y=\operatorname{sech}(x) \Rightarrow x=\operatorname{sech}^{-1}(y)$ where $D_{f}=(0,1], R_{f}=\mathrm{R}$
6) If $y=\operatorname{csch}(x) \Rightarrow x=\operatorname{csch}^{-1}(y)$ where $D_{f}=R \backslash\{0\}, R_{f}=R \backslash\{0\}$ Relations Between Functions:

$$
\begin{aligned}
& \sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right) \\
& \cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)
\end{aligned}
$$

1)
2)
3) $\tanh ^{-1}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),|x|<1$
4) $\operatorname{coth}^{-1}(x)=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right),|x|>1$
5) $\operatorname{sech}^{-1}(x)=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right), 0<x \leq 1$
6) $\operatorname{csch}^{-1}(x)=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right), \forall x \in \mathbb{R} \backslash\{0\}$

Proof:

$$
\begin{aligned}
& \text { 1) Let }{ }^{y}=\sinh ^{-1}(x) \Rightarrow x=\sinh (y) \Rightarrow x=\frac{e^{y}-e^{-y}}{2} \Rightarrow 2 x=e^{y}-e^{-y} \\
& e^{y}-2 x-e^{-y}=0 \Rightarrow e^{2 y}-2 x e^{y}-1=0 \\
& \Rightarrow e^{y}=\frac{2 x \pm \sqrt{4 x^{2}+4}}{2}=\frac{2\left(x \pm \sqrt{x^{2}+1}\right)}{2} \Rightarrow e^{y}=x \pm \sqrt{x^{2}+1}
\end{aligned}
$$

$$
\text { since } e^{y}>0 \Rightarrow e^{y}=x+\mathrm{p}_{x^{2}}+1 \Rightarrow \ln \left(e^{y}\right)=\ln \left(x+\mathrm{p}_{x^{2}}+1\right)
$$

$$
\Rightarrow y=\ln \left(x+\sqrt{x^{2}+1}\right) \Rightarrow \sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

$$
\begin{aligned}
y & =\tanh ^{-1}(x) \Rightarrow x=\tanh (y) \Rightarrow x=\frac{e^{y}}{e^{y}+e^{-y}} \Rightarrow e^{y}-e^{-y}=x e^{y}+x e^{-y} \\
& \Rightarrow e^{y}-e^{-y}-x e^{y}-x e^{-y}=0 \Rightarrow(1-x) e^{y}-(1+x) e^{-y}=0 \\
& \Rightarrow(1-x) e^{2 y}-(1+x)=0 \Rightarrow e^{2 y}=\frac{1+x}{1-x} \Rightarrow \ln \left(e^{2 y}\right)=\ln \left(\frac{1+x}{1-x}\right) \\
& \Rightarrow 2 y=\ln \left(\frac{1+x}{1-x}\right) \Rightarrow y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \Rightarrow \tanh ^{-1}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

18. Limits

If the values of a function $f(x)$ approach the value L as x approaches c, we say f has limit L as x approaches c and we write $\lim _{x \rightarrow c} f(x)=L$
$\lim _{x \rightarrow-2} \frac{4}{x^{2}}=\frac{4}{(-2)^{2}}=1$

x	-2.1	-2.01	-2.001	-2.0001	\cdots	2	..	-1.999	-1.99	-1.9
$f(x)$	0.90702	0.99007	0.99900	0.99990	...	1	...	1.0010	1.0100	1.1080
left side										

Theorem (18.1):

If $\lim _{x \rightarrow a} f(x)=A$ and $\lim _{x \rightarrow a} g(x)=B$, then

1) $\lim (f(x) \pm g(x))=\lim f(x) \pm \lim g(x)=A \pm B x \rightarrow a \quad x \rightarrow a \quad x \rightarrow a$
2) $\lim (f(x) \times g(x))=\lim f(x) \times \lim g(x)=A \times B_{x \rightarrow a} \quad x \rightarrow a \quad x \rightarrow a$
3) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{A}{B}, B \neq 0$
4) $\lim k f(x)=k \lim f(x)=k A, k$ is constant $x \rightarrow a \quad x \rightarrow a$
5) $\lim _{x \rightarrow a} k=k$, where k is constant

$$
\begin{aligned}
& \lim _{x \rightarrow a} x=a \\
& \lim _{x \rightarrow a} x^{n}=\left(\lim _{x \rightarrow a} x\right)^{n}=a^{n}
\end{aligned}
$$

$$
\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{A}, A>0 \text { if } n
$$

6)
7)

8)is even

Example (18.2): Find $\lim \left(x^{2}-4 x+3\right)$

$$
x \rightarrow 5
$$

Solution:

$\lim _{x \rightarrow 5}\left(x^{2}-4 x+3\right)=\lim _{x \rightarrow 5} x^{2}-\lim _{x \rightarrow 5} 4 x+\lim _{x \rightarrow 5} 3=\lim _{x \rightarrow 5} x^{2}-4 \lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 3=25-20+3=8$
Example (18.3): Find $\lim x \rightarrow 2 \frac{5 x^{3}+4}{x-3}$
Solution:
$\lim _{x \rightarrow 2} \frac{5 x^{3}+4}{x-3}=\frac{\lim _{x \rightarrow 2} 5 x^{3}+4}{\lim _{x \rightarrow 2} x-3}=\frac{40+4}{2-3}=\frac{44}{-1}=-44$
Example (18.4): Find $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}$

Solution:

$\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+5)}{x-5}=\lim _{x \rightarrow 5} x+5=5+5=10$

Exercises (18): Find the following limits:

$$
\begin{array}{llll}
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} & \text { 1)2)3) } & \lim _{x \rightarrow 0} \frac{5 x^{2}-4}{x+1} & \lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4} \\
\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x-3} & \text { 4)5)6) } & \lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1} & \lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{4}{x^{2}-4}\right)
\end{array}
$$

18.1 Right-Hand and Left-Hand Limits:

Let $f(x)$ be a function then the right-hand limit defined as $\lim f(x)$ (the limit of $f(x)$ $x \rightarrow a^{+}$ as x approaches a from the right). and the left-hand limit defined as $\lim f(x)$ (the $x \rightarrow a$-limit of $f(x)$ as x approaches a from the left).

Remark (18.1):

$\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim f(x)=L=\lim f(x)$

$$
x \rightarrow a^{-} \quad x \rightarrow a^{+}
$$

Example (18.5): Find $\lim [x]$
$x \rightarrow 3$ Solution: $\lim [x]=2$
and $\lim [x]=3 \Rightarrow \lim [x] 6=\lim [x]_{x \rightarrow 3^{-}} \quad x \rightarrow 3^{+}$
$x \rightarrow 3^{-} \quad x \rightarrow 3^{+}$
\therefore the limit dose not exists.

Example (18.6): $\quad f(x)=\left\{\begin{array}{cc}4-x^{2} & \text { if } \quad x \leq 1 \\ & \text { Iffind } \lim f(x)\end{array}\right.$
[0] $2+x^{2} \quad$ if $\quad x>1 \quad x \rightarrow 1$

Solution:

$\lim f(x)=\lim \left(4-x^{2}\right)=4-1=3$
$x \rightarrow 1^{-} \quad x \rightarrow 1^{-}$
$\lim f(x)=\lim \left(2+x^{2}\right)=2+1=3$
$x \rightarrow 1^{+}$
$x \rightarrow 1^{+}$
$\because \lim _{-} f(x)=\lim _{+} f(x)=3 \Rightarrow \lim f(x)=3 x \rightarrow 1 x \rightarrow 1$ $x \rightarrow 1$

Theorem (18.2):

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Example (18.7): Find $\lim x \rightarrow 0 \frac{1-\cos (x)}{x}$
Solution:
$\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x} \times \frac{1+\cos (x)}{1+\cos (x)}=\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(x)}{x(1+\cos (x))}=\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \times \lim _{x \rightarrow 0} \frac{\sin (x)}{1+\cos (x)}=0$
Example (18.8): Find $\lim x \rightarrow 0 \frac{\sin (15 x)}{7 x}$
Solution:
$\lim _{x \rightarrow 0} \frac{\sin (15 x)}{7 x} \times \frac{15}{15}=\frac{15}{7} \lim _{x \rightarrow 0} \frac{\sin (15 x)}{15 x}=\frac{15}{7} \times 1=\frac{15}{7}$

Exercises (18.1): Find the following limits:

1) $\lim _{x \rightarrow 0} \frac{\sin (x)}{\sqrt{x}}$
2) $x \rightarrow 0{ }^{x} \lim \cot (x)$
3) $\left.y_{y \rightarrow 0} \frac{1-\cos (y)}{y^{2}} \lim 4\right) \lim _{t \rightarrow 0} \frac{\tan (t)}{2 t}$
4)

${ }_{x \rightarrow 0} \frac{2 x+1-\cos (x)}{3 x} \lim$
6) ${ }^{x \rightarrow 0} \frac{\sin (3 x)}{\sin (4 x)}$ lim

Theorem (18.3):

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \\
& \lim _{x \rightarrow 0}\left(1+\frac{1}{x}\right)^{x}=e \\
& \lim _{x \rightarrow 0}(1+\lambda x)^{\frac{1}{x}}=e^{\lambda}, \lambda
\end{aligned}
$$

2)

3)any constant

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1 \\
& \lim _{x \rightarrow 1} \frac{x-1}{\ln (x)}=1 \\
& \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln (a), a
\end{aligned}
$$

4)
5)

6)any constant
7) $\lim _{x \rightarrow 0} \frac{(1+x)^{\alpha}-1}{x}=\alpha$

Remark (18.2):

$$
\lim _{x \rightarrow a} \log _{c} f(x)=\log _{c} \lim _{x \rightarrow a} f(x)
$$

Example (18.9): Find the following limits

1) $x \rightarrow 0 \frac{\log _{a}(1+x)}{x} \lim$
2) $x \rightarrow 0 \frac{e^{2 x}-e^{-3 x}}{x} \lim$

Solution:

$$
\begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow 0} \frac{\log _{a}(1+x)}{x} & =\lim _{x \rightarrow 0} \frac{1}{x} \log _{a}(1+x)=\lim _{x \rightarrow 0} \log _{a}(1+x)^{\frac{1}{x}}=\log _{a} \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}} \\
& =\log _{a} e=\frac{\ln (e)}{\ln (a)}=\frac{1}{\ln (a)}
\end{aligned} \\
& \lim _{x \rightarrow 0} \frac{e^{2 x}-e^{-3 x}+1-1}{x}=\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}-\lim _{x \rightarrow 0} \frac{e^{-3 x}-1}{x}=2 \lim _{x \rightarrow 0} \frac{e^{2 x}-1}{2 x}+3 \lim _{x \rightarrow 0} \frac{e^{-3 x}-1}{-3 x}
\end{aligned}
$$

1)
2)

$$
=2 \times 1+3 \times 1=5
$$

Exercises (18.2): Find the following limits:

1) $x \rightarrow 0 \frac{6^{x}-2^{x}}{x} \lim$
2) $x \rightarrow a \frac{x^{a}-a^{x}}{x-a} \lim$
3) $x \rightarrow 0 \frac{a^{-x}-1}{x} \lim$
4) $x \rightarrow 0 \frac{\cosh (x)-1}{x} \lim$

18.2 Limits at Infinity

\sim We say that $\lim f(x)=L$ if for any positive number we can find a positive num ${ }_{x \rightarrow+\infty}$ ber N such that $|f(x)-L|<\epsilon$ for all $x>N$.
\sim We say that $\lim _{x \rightarrow-\infty} f(x)=L_{\text {if for any positive number we can find a positive num- }}$ ber N such that $|f(x)-L|<\epsilon$ for all $x<-N$.

Example (18.10): Prove that $\lim _{x \rightarrow \infty} \frac{2 x}{3 x+1}=\frac{2}{3}$
Solution:

$$
\begin{aligned}
& \begin{aligned}
&|f(x)-L|<\epsilon \Rightarrow\left|\frac{2 x}{3 x+1}-\frac{2}{3}\right|<\epsilon \Rightarrow\left|\frac{6 x-6 x-2}{3(3 x+1)}\right|<\epsilon \Rightarrow\left|\frac{-2}{9 x+3}\right|<\epsilon \Rightarrow \frac{2}{9 x+3}<\epsilon \\
& \Rightarrow \frac{9 x+3}{2}>\frac{1}{\epsilon} \Rightarrow 9 x+3>\frac{2}{\epsilon} \Rightarrow 9 x>\frac{2}{\epsilon}-3 \Rightarrow 9 x>\frac{2-3 \epsilon}{\epsilon} \Rightarrow x>\frac{2-3 \epsilon}{9 \epsilon} \\
& \text { Let } N=\frac{2-3 \epsilon}{9 \epsilon} \\
& \Rightarrow \lim _{x \rightarrow \infty} \frac{2 x}{3 x+1}=\frac{2}{3}
\end{aligned}
\end{aligned}
$$

Theorem (18.4):

1) $\lim _{x \rightarrow \infty} \frac{1}{x}=0$
2) $x \rightarrow-\infty$ $\frac{1}{x}=0$ lim

Theorem (18.5):

?

$$
\text { ? }-\infty \quad n=1,3,5, \cdots
$$

$\lim _{x \rightarrow+\infty} x^{n}=+\infty, n=1,2,3, \cdots$
1)2) $\lim x_{n}=$? $x \rightarrow-\infty$

20 ${ }^{2}+\infty$
$n=2,4,6, \cdots$ $X 2$
Example (18.11): Find lim

$$
x \rightarrow-\infty 2 x 2+1
$$

Solution:
$\lim _{x \rightarrow-\infty} \frac{\frac{x^{2}}{x^{2}}}{\frac{2 x^{2}}{x^{2}}+\frac{1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{1}{2+\frac{1}{x^{2}}}=\frac{1}{2+\frac{1}{\infty}}=\frac{1}{2+0}=\frac{1}{2}$
Example (18.12): Find lim
$x \rightarrow \infty \sqrt[3]{\frac{3 x+5}{6 x-8}}$ Solution:
$\lim _{x \rightarrow \infty} \sqrt[3]{\frac{3 x+5}{6 x-8}}=\sqrt[3]{\lim _{x \rightarrow \infty} \frac{3 x+5}{6 x-8}}=\sqrt[3]{\lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}}{6-\frac{8}{x}}}=\sqrt[3]{\frac{1}{2}}$

Exercises (18.3): Find the following limits:
$\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5}-x^{3}\right)$
$\lim _{x \rightarrow \infty} \frac{7 x-4}{\sqrt{x^{3}+5}}$
1)
2) 3$) \lim _{x \rightarrow-\infty} \frac{4 x^{2}-x}{2 x^{3}-5}$

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{5 x^{2}-2}}{x+3}
$$

4)5) $\lim _{x \rightarrow-\infty}-4 x^{8}$

Theorem (18.6): If $g(x) \leq f(x) \leq h(x)$ for all x such that $\lim g(x)=\lim h(x)=L$, where L is constant $x \rightarrow \infty \quad x \rightarrow \infty$
then $\lim _{x \rightarrow \infty} f(x)=L$

Example (18.13): Prove that $\lim x \rightarrow \infty \quad \frac{\sin (x)}{x}=0$

Proof:

Since $-1 \leq \sin (x) \leq 1 \Rightarrow \frac{-1}{x} \leq \frac{\sin (x)}{x} \leq \frac{1}{x}$
$\because \lim _{x \rightarrow \infty} \frac{-1}{x}=0$ and $\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$\therefore \lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=0$
Example (18.14): Find $\frac{\cos ^{2}(2 x)}{4 x^{2}} \lim$ (H.W) $x \rightarrow \infty$

Example (18.15): Find $\lim ^{x \rightarrow-\infty}\left(1+\frac{2}{x}\right) \cos \left(\frac{1}{x}\right)$
Solution:
$\lim _{x \rightarrow-\infty}\left(1+\frac{2}{x}\right) \cos \left(\frac{1}{x}\right)=1$
Example (18.16): Find $\lim ^{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)$
Solution:
Let $y=\frac{1}{x} \Rightarrow x=\frac{1}{y}$, at $x \rightarrow \infty$ then $y \rightarrow 0$
$\therefore \lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)=\lim _{y \rightarrow 0} \frac{\sin (y)}{y}=1$

19. Continuity

Definition (19.1): A function f is said to be continuous at $x=c$ provided the following conditions are satisfied:
i. $f(c)$ is defined
ii. $\lim _{x \rightarrow c} f(x)$ exists
iii. $\lim _{x \rightarrow c} f(x)=f(c)$

Example (19.1): Determine whether the following functions are continuous or not at $x=2$.

$$
\begin{aligned}
& f(x)=\frac{x^{2}-4}{x-2} \text { 1)2) } \quad g(x)=\left\{\begin{array}{lll}
\frac{x^{2}-4}{x-2} & \text { if } & x 6=2
\end{array}\right. \\
& h(x)=\left\{\begin{array}{lll}
\frac{x^{2}-4}{x-2} & \text { if } \quad x 6=2
\end{array}\right.
\end{aligned}
$$

3)

$$
\text { 20 } 4 \text { if } \quad x=2
$$

Solution:

1) $f(2)=\frac{4-4}{2-2}=\frac{0}{0}$ not defined
$\therefore f(x)$ is discontinuous
2)

i. $g(2)=3$
ii. $\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=4$ exists
iii. $\lim _{x \rightarrow 2} g(x) \neq g(2)$
$\therefore g(x)$ is discontinuous
3)
i. $h(2)=4$
ii. $\lim _{x \rightarrow 2} h(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=4$ exist
iii. $\lim _{x \rightarrow 2} h(x)=h(2)$
$\therefore h(x)$ is continuous

Theorem (19.1):

Every polynomial functions are continuous.
Theorem (19.2):
A rational functions are continuous at every number where the denominator is non zero.

Theorem (19.3):

If the functions f and g are continuous at c, then:

1) $f \mp g$ is continuous at c
2) $f . g$ is continuous at c
3) f / g is continuous at c if $g(c) 6=0$

Example (19.2): Show that whether the function $f(x)=\frac{x^{2}-9}{x^{2}-5 x+6}$ continuous or not? Solution:
$x^{2}-5 x+6=0 \Rightarrow(x-3)(x-2)=0 \Rightarrow x=3, x=2$
$\therefore f(x)$ continuous at every points except $x=3$ and $x=2$
Exercises (19): Show that whether the following functions are continuous or not?

1) $g(x)=|x|$ at $x=0 \quad$ 2) $f(x)=$| ? | |
| :--- | :--- |
| ? $x^{2}+2 x+1$ | if $\quad x \geq 1$ |\quad at $x=1$

Theorem (19.4):

The functions $\sin (x)$ and $\cos (x)$ are continuous functions.

Theorem (19.5):

i. If the function $g(x)$ is continuous at c, and $f(x)$ continuous at $g(c)$, then $f \circ g$ is continuous at c.
ii. If the function g is continuous everywhere and the function f is continuous everywhere, then the composition $f \circ g$ is continuous everywhere.

Example (19.3): Show that the function $h(x)=\left(\frac{x \sin (x)}{x^{2}+2}\right)^{2}$ is continuous at every value of x.

Solution: $f(x)=x^{2}$ and
$g(x)=\frac{x \sin (x)}{x^{2}+2}$
$g_{1}(x)=\frac{x}{x^{2}+2}$ and $g_{2}(x)=\sin (x)$
$\because f(x)$ is continuous (by Theorem (19.1)) Since
$g^{1}(x)$ is continuous (by Theorem (19.2)) and

1) $y=x^{2}+2 x+1$
2) $y=p_{x^{2}}+3$

Solution: 1
$g_{2}(x)$ is continuous (by Theorem (19.4)) $\therefore g(x)$
is continuous (by Theorem (19.3))
$\therefore(f \circ g)(x)=\left(\frac{x \sin (x)}{x^{2}+2}\right)^{2}$ is continuous (by Theorem (19.5))
$\therefore h(x)$ is continuous.

20. Derivative:

The derivative of a function f is the function f^{0} whose value at x is defined by the equation:
$\frac{d f}{d x}=\frac{d}{d x} f(x)=\frac{d y}{d x}=y^{\prime}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Definition (20.1):

A function that has a derivative at a point x is said to be differentiable at x.

Definition (20.2):

A function that is differentiable at every point of its domain is called differentiable.
Definition (20.3):
When the number $f^{\circ}(x)$ exists it is called the slope of the curve $y=f(x)$ at x.
The line through the point $(x, f(x))$ with slope $f^{0}(x)$ is the tangent to the curve at x.
Example (20.1): Find $\frac{d y}{d x}$ by definition for the following functions:
$y^{\prime}=\frac{d y}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+1-x^{2}-2 x-1}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2 x+2 h+1-x^{2}-2 x-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\chi_{k}(2 x+h+2)}{\ell_{k}}=2 x+2
\end{aligned}
$$

Solution: 2

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}+3}-\sqrt{x^{2}+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+3-\left(x^{2}+3\right)}{h\left(\sqrt{(x+h)^{2}+3}+\sqrt{x^{2}+3}\right)}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+3-x^{2}-3}{h\left(\sqrt{(x+h)^{2}+3}+\sqrt{x^{2}+3}\right)} \\
& =\lim _{h \rightarrow 0} \frac{h_{k}(2 x+h)}{h_{k}\left(\sqrt{(x+h)^{2}+3}+\sqrt{x^{2}+3}\right)}=\frac{2 x}{\sqrt{x^{2}+3}+\sqrt{x^{2}+3}}=\frac{2 x}{2 \sqrt{x^{2}+3}}=\frac{x}{\sqrt{x^{2}+3}}
\end{aligned}
$$

Exercises (20.1): Find $\frac{d y}{d x}$ by definition for the following functions:
$\begin{array}{rrr}3 \\ \text { 1) } y=x+ & \sqrt{2}_{-} y=\frac{x+1}{x-1} 3 & \text { 2)3) } y \\ \text { 4)5) } & y=\frac{1}{x}=x^{3} \quad y=\frac{1}{\sqrt{x+1}}\end{array}$

Differentiation Theorem:

1) $\frac{d}{d x}(c)=0, c_{\text {is constant }}$
$\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))$
$\frac{d}{d x}(f(x) \mp g(x))=\frac{d}{d x}(f(x)) \mp \frac{d}{d x}(g(x))$
$\frac{d}{d x}(f(x) \times g(x))=f(x) \times \frac{d}{d x}(g(x))+g(x) \times \frac{d}{d x}(f(x))$
$\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \times \frac{d}{d x}(f(x))-f(x) \times \frac{d}{d x}(g(x))}{(g(x))^{2}}, g(x) \neq 0$
$\frac{d}{d x}(f(x))^{n}=n \times(f(x))^{n-1} \times \frac{d}{d x}(f(x))$
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
2)
3)
4)
5)
6)

7)

Example (20.2): Find f^{0} of the following functions:

$$
f(x)=x+\frac{1}{x^{2}} \text { 1) } \quad \begin{array}{lll}
& \overline{\mathrm{p}^{3}-2}+\sqrt{1} \\
& & \text { 2) } f(x)=\quad x \\
& & x+1
\end{array}
$$

Solution: 1
$f^{\prime}(x)=1-\frac{2 x}{x^{4}}=1-\frac{2}{x^{3}}$
Solution: 2
$f(x)=\left(x^{3}-2\right)^{\frac{1}{2}}+(x+1)^{-\frac{1}{2}}$
$\therefore f^{\prime}(x)=\frac{1}{2}\left(x^{3}-2\right)^{-\frac{1}{2}} \times 3 x^{2}-\frac{1}{2}(x+1)^{-\frac{3}{2}} \times 1=\frac{3}{2} \frac{x^{2}}{\sqrt{x^{3}-2}}-\frac{1}{2} \frac{1}{\sqrt{(x+1)^{3}}}$
Solution: 3
$f^{\circ}(x)=\left(x^{2}+1\right)^{3} \times 2\left(x^{3}-1\right) \times 3 x^{2}+\left(x^{3}-1\right)^{2} \times 3\left(x^{2}+1\right)^{2} \times 2 x=$ $6 x^{2}\left(x^{2}+1\right)^{3}\left(x^{3}-1\right)+6 x\left(x^{3}-1\right)^{2}\left(x^{2}+1\right)^{2}$

Exercises (20.2): Find f^{0} of the following functions:

$$
\begin{array}{lll}
f(x)=\left(\frac{x+1}{x^{2}-2}\right)^{3} & \text { 1) } & \text { 2) } f(x)=x^{2}+\frac{1}{x^{2}}
\end{array} \quad \text { 3) } f(x)=\frac{x^{2}+1}{x^{2}-1}, x^{2} \neq 1
$$

7) $f(x)=(x+1)^{2}\left(x^{2}+1\right)^{-3}$

20.1 Second and Higher-Order Derivative:

If the derivative f^{0} of a function f itself differentiable then the derivative of f^{0} is denoted by f^{00} and is called the second derivative of f.

$$
\text { i.e : } \begin{aligned}
f^{\prime}(x)= & \frac{d}{d x}(f(x)) \\
f^{\prime \prime}(x)= & \frac{d^{2}}{d x^{2}}(f(x))=\frac{d}{d x}\left[\frac{d}{d x}(f(x))\right] \\
f^{\prime \prime \prime}(x)= & \frac{d^{3}}{d x^{3}}(f(x))=\frac{d^{2}}{d x^{2}}\left[\frac{d}{d x}(f(x))\right] \\
& \vdots \\
f^{(n)}(x) & =\frac{d^{n}}{d x^{n}}(f(x))
\end{aligned}
$$

Example (20.3): Find $f^{(5)}(x)$ where $f(x)=3 x^{4}-2 x^{3}+x^{2}-4 x+2$
Solution:
$f^{0}(x)=12 x^{3}-6 x^{2}+2 x-4$
$f^{00}(x)=36 x^{2}-12 x+2 f^{000}(x)$
$=72 x-12 f^{(4)}(x)=72 f^{(5)}(x)$
$=0$
Exercises (20.3): Find $\frac{d^{4} y}{d x^{4}}$ where $^{y=} \frac{3}{x^{3}}$
Theorem (20.1):
If f has a derivative at $x=c$, then f is continuous at c.

20.2 Chain Rule:

i. If y is a differentiable function of u and u is a differentiable function of x then,

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

ii. If y is a differentiable function of u and x is a differentiable function of u then,

$$
\frac{d y}{d x}=\frac{d y / d u}{d x / d u}
$$

Example (20.4): If $y=t^{4}+2 t+3, x=t^{2}+1$ find $\frac{d y}{d x}$

Solution:

$\frac{d y}{d t}=4 t^{3}+2$ and $\frac{d x}{d t}=2 t$
$\therefore \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{4 t^{3}+2}{2 t}=\frac{2 t^{3}+1}{t}=\frac{2(\sqrt{x-1})^{3}+1}{\sqrt{x-1}}=\frac{2(x-1)^{\frac{3}{2}}+1}{\sqrt{x-1}}$
Example (20.5): If $y=\frac{u^{3}+1}{u^{3}-2}, u=\sqrt{x}+1$ find $\frac{d y}{d x}$
Solution:

$$
\begin{aligned}
& \frac{d y}{d u}=\frac{\left(u^{3}-2\right) \cdot 3 u^{2}-\left(u^{3}+1\right) \cdot 3 u^{2}}{\left(u^{3}-2\right)^{2}}=\frac{3 x^{5}-6 u^{2}-3 x^{5}-3 u^{2}}{\left(u^{3}-2\right)^{2}}=\frac{-9 u^{2}}{\left(u^{3}-2\right)^{2}} \\
& \frac{d u}{d x}=\frac{1}{2 \sqrt{x+1}} \\
& \begin{aligned}
\therefore \frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x}=\frac{-9 u^{2}}{\left(u^{3}-2\right)^{2}} \times \frac{1}{2 \sqrt{x+1}}=\frac{-9(x+1)^{-\sqrt{x+1}}}{\left((x+1)^{\frac{3}{2}}-2\right)^{2}} \times \frac{1}{2 \sqrt{x+1}} \\
& =\frac{-9 \sqrt{x+1}}{2\left((x+1)^{\frac{3}{2}}-2\right)^{2}}
\end{aligned}
\end{aligned}
$$

Exercises (20.4):

1) If $y=t^{2}+2 t, t=\frac{x-2}{3-x}$ find $\frac{d y}{d x}$
2) If $y=\sqrt{t}+\frac{1}{\sqrt{t}}, x=t^{2}+2 t$ find $\frac{d y}{d x}$
3) If $x=\sqrt{t}-t^{3}, y=t^{\frac{2}{3}}+t^{2}$ find $\frac{d y}{d x}$
4) If $y=s^{2}, s=r+1, r=t^{2}-5, t=w+3, w=x^{2}$ find $\frac{d y}{d x}$

20.3 Implicit differentiation:

If y can not be written in the form $y=f(x)$ then to find $\frac{d y}{d x}$:
i. Differentiable both sides with respect to x. ii.

Solve the result for $\frac{d y}{d x}$.
Example (20.6): Find $\frac{d y}{d x}$ for the functions

1) $x^{3}+y^{3}=3 x y$

Solution:

$\Rightarrow 3 x^{2}+3 y^{2} \frac{d y}{d x}=3 x \frac{d y}{d x}+3 y \Rightarrow 3 y^{2} \frac{d y}{d x}-3 x \frac{d y}{d x}=3 y-3 x^{2}$
$\Rightarrow \frac{d y}{d x}\left(3 y^{2}-3 x\right)=3 y-3 x^{2} \Rightarrow \frac{d y}{d x}=\frac{3 y-3 x^{2}}{3 y^{2}-3 x}=\frac{y-x^{2}}{y^{2}-x}$
2) $x y+y^{2} x+3 y-2 x=0$

Solution:

$\Rightarrow x \frac{d y}{d x}+y+y^{2}+2 y x \frac{d y}{d x}+3 \frac{d y}{d x}-2=0$
$\therefore \frac{d y}{d x}=\frac{2-y-y^{2}}{x+2 x y+3}$
3) $\frac{1}{y x^{2}}+\frac{1}{y x}=y+x$

Solution:

$$
\begin{aligned}
& \Rightarrow\left(y x^{2}\right)^{-1}+(y x)^{-1}=y+x \\
& \Rightarrow-\left(y x^{2}\right)^{-2}\left(2 y x+x^{2} \frac{d y}{d x}\right)-(y x)^{-2}\left(y+x \frac{d y}{d x}\right)=\frac{d y}{d x}+1 \\
& \Rightarrow-2 y x\left(y x^{2}\right)^{-2}-x^{2}\left(y x^{2}\right)^{-2} \frac{d y}{d x}-y(y x)^{-2}-x(y x)^{-2} \frac{d y}{d x}=\frac{d y}{d x}+1 \\
& \Rightarrow \frac{d y}{d x}\left(-x^{2}\left(y x^{2}\right)^{-2}-x(y x)^{-2}-1\right)=2 y x\left(y x^{2}\right)^{-2}+y(y x)^{-2}+1 \\
& \therefore \frac{d y}{d x}=\frac{2 y x\left(y x^{2}\right)^{-2}+y(y x)^{-2}+1}{-x^{2}\left(y x^{2}\right)^{-2}-x(y x)^{-2}-1}
\end{aligned}
$$

Exercises (20.5): Find $\frac{d y}{d x}$ if
$x^{2} y^{2}+{ }_{y}^{x}=0$
2) $\frac{x^{2} y}{x-y}=\frac{3 x}{4+y}$
1)
$\frac{1}{x}+\frac{1}{y}=1$
4) $x y^{2}=\frac{x+y}{x-y}$
$y=\sqrt{\sqrt{x}+\sqrt{x^{2}+\sqrt{x}}}$
3)
5)

20.4 Derivatives of Trigonometric Functions:

$$
\begin{aligned}
\frac{d}{d x}(\cos (u)) & =-\sin (u) \cdot \frac{d u}{d x} \\
\frac{d}{d x}(\tan (u)) & =\sec ^{2}(u) \cdot \frac{d u}{d x}(\sin (u))=\cos (u) \cdot \frac{d u}{d x} \\
\frac{d}{d x}(\cot (u)) & =-\csc ^{2}(u) \cdot \frac{d u}{d x}
\end{aligned}
$$

3)
4)

$$
\begin{aligned}
\frac{d}{d x}(\sec (u)) & =\sec (u) \tan (u) \cdot \frac{d u}{d x} \\
\frac{d}{d x}(\csc (u)) & =-\csc (u) \cot (u) \cdot \frac{d u}{d x}
\end{aligned}
$$

5)
6)

Example (20.7): Find $\frac{d y}{d x}$ or $f^{\prime}(x)$ if

1) $f(x)=\tan \left(3 x^{2}\right)$ Solution:

$$
f^{0}(x)=6 x \sec ^{2}\left(3 x^{2}\right)
$$

2) $y=\sin (2 x)+\sec (3 x)$

Solution:

$\Rightarrow \frac{d y}{d x}=2 \cos (2 x)+3 \sec (3 x) \tan (3 x)$
3) $y=\cos (\sqrt{x})$

Solution:

$\Rightarrow \frac{d y}{d x}=-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}=-\frac{1}{2 \sqrt{x}} \sin (\sqrt{x})$
4) $y^{2}=x^{2}+\sin (x y)$

Solution:

$2 y \frac{d y}{d x}=2 x+\cos (x y)\left(x \frac{d y}{d x}+y\right) \Rightarrow 2 y \frac{d y}{d x}=2 x+x \cos (x y) \frac{d y}{d x}+y \cos (x y)$
$\Rightarrow 2 y \frac{d y}{d x}-x \cos (x y) \frac{d y}{d x}=2 x+y \cos (x y)$
$\therefore \frac{d y}{d x}=\frac{2 x+y \cos (x y)}{2 y-x \cos (x y)}$
5) $x y=\csc (x-y)$

Solution:

$$
\begin{aligned}
& x \frac{d y}{d x}+y=-\csc (x-y) \cot (x-y)\left(1-\frac{d y}{d x}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{-y-\csc (x-y) \cot (x-y)}{x-\csc (x-y) \cot (x-y)}
\end{aligned}
$$

Exercises (20.6): Find $\frac{d y}{d x}$ for the following functions:

1) $y^{2} x=\cos ^{3}(x-y)^{2}$
2) $y=x^{2} \tan \left(x^{2}\right)$
3) $y=\cot \left(\frac{\sin ^{2}(x)}{\tan (x)}\right)$
4) $y x^{2}=\sin ^{4}\left(x^{3}\right)$
5) $y=\tan ^{2}(x) \cot ^{2}(1-x)$
6) $y=\tan ^{2}(x) \cot ^{2}(x)$

20.5 Derivatives of the Inverse Trigonometric Functions:

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1}(u)\right)=\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(\cos ^{-1}(u)\right)=\frac{-1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(\tan ^{-1}(u)\right)=\frac{1}{1+u^{2}} \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(\cot ^{-1}(u)\right)=\frac{-1}{1+u^{2}} \cdot \frac{d u}{d x} \\
& \text { 1) }
\end{aligned}
$$

2)
3)
4)

$$
\begin{aligned}
\frac{d}{d x}\left(\sec ^{-1}(u)\right) & =\frac{1}{|u| \sqrt{u^{2}-1}} \cdot \frac{d u}{d x} \\
\frac{d}{d x}\left(\csc ^{-1}(u)\right) & =\frac{-1}{|u| \sqrt{u^{2}-1}} \cdot \frac{d u}{d x}
\end{aligned}
$$

5)
6)

Proof: 1

$\because \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
Let $y=\sin ^{-1}(u) \Rightarrow \sin (y)=u$
$\Rightarrow \cos (y) \cdot \frac{d y}{d x}=\frac{d u}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{\cos (y)} \cdot \frac{d u}{d x}$
$\because \sin (y)=u \Rightarrow \sin ^{2}(y)=u^{2} \Rightarrow 1-\sin ^{2}(y)=1-u^{2} \Rightarrow \cos ^{2}(y)=1-u^{2}$
$\Rightarrow \sqrt{\cos ^{2}(y)}=\sqrt{1-u^{2}} \Rightarrow \cos (y)=\sqrt{1-u^{2}}$
$\therefore \frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1}(u)\right)=\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$

Example (20.8): Find $\frac{d y}{d x}$ if

1) $y=\sin ^{-1}\left(3 x^{2}\right)$ Solution:

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-\left(3 x^{2}\right)^{2}}} \cdot 6 x=\frac{6 x}{\sqrt{1-9 x^{4}}}
$$

2) $y=\tan ^{-1}(3 \tan (x))$

Solution:

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{1+(3 \tan (x))^{2}} \cdot 3 \sec ^{2}(x)=\frac{3 \sec ^{2}(x)}{1+9 \tan ^{2}(x)}
$$

3) $y=\sec ^{-1}\left(2 x^{2}\right)$ Solution:

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{\left|2 x^{2}\right| \sqrt{\left(2 x^{2}\right)^{2}-1}} \cdot 4 x=\frac{4 x}{2 x^{2} \sqrt{4 x^{4}-1}}
$$

Exercises (20.7): Find $\frac{d y}{d x}$ for the following functions:

1) $y=\tan ^{-1}(\sqrt{x+1})$
2) $y=\cot ^{-1}\left(\frac{x}{2}\right)+\tan ^{-1}\left(\frac{x}{2}\right)$
3) $y=x \cos ^{-1}(3 x)$
4) $y=\cot ^{-1}\left(\frac{x+1}{1-x}\right)$

20.6 Derivatives of the Logarithmic and Exponential Functions:

$$
\begin{aligned}
& \frac{d}{d x}\left(\log _{a}(u)\right)=\frac{1}{u \ln (a)} \cdot \frac{d u}{d x} \text { 1) } \frac{d}{d x}(\ln (u))=\frac{1}{u} \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(a^{u}\right)=a^{u} \ln (a) \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(e^{u}\right)=e^{u} \cdot \frac{d u}{d x}
\end{aligned}
$$

2)
3)
4)

Example (20.9): Find $\frac{d y}{d x}$ for the following functions:

$$
y=\ln \left(x^{3}\right)
$$

1) $\Rightarrow \frac{d y}{d x}=\frac{1}{x^{3}} \cdot 3 x^{2}=\frac{3}{x}$

$$
\begin{aligned}
& y=\ln \left(\sin ^{-1}(2 x)\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\sin ^{-1}(2 x)} \cdot \frac{2}{\sqrt{1-4 x^{2}}}=\frac{2}{\sin ^{-1}(2 x) \sqrt{1-4 x^{2}}}
\end{aligned}
$$

$y=(100)^{x^{2}+2 x}$
3) $\Rightarrow \frac{d y}{d x}=(100)^{x^{2}+2 x} \ln (100) \cdot(2 x+2)$

$$
y=e^{\sin (x)}
$$

4) $\Rightarrow \frac{d y}{d x}=e^{\sin (x)} \cos (x)=\cos (x) e^{\sin (x)}$

$$
\begin{aligned}
& y=x \log _{3} x \\
& \Rightarrow \frac{d y}{d x}=x \cdot\left(\frac{1}{x \ln (3)}\right)+\log _{3} x=\frac{1}{\ln (3)}+\log _{3} x \\
& y=e^{\ln (x)+x} \\
& \Rightarrow \frac{d y}{d x}=e^{\ln (x)+x} \cdot\left(\frac{1}{x}+1\right)=e^{\ln (x)} e^{x}\left(\frac{1+x}{x}\right) \\
& \quad=x e^{x}\left(\frac{1+x}{x}\right)=e^{x}(1+x)
\end{aligned}
$$

5)
6)

Exercises (20.8): Find $\frac{d y}{d x}$ for the following functions:

1) $y=e \ln (x)-\ln (1+x)$
2) $y=\ln \left(\frac{1}{x}\right)$
3) $y=e^{\ln \left(\frac{1}{x^{2}}\right)}$
4) $y=\frac{\log _{3} x^{2}}{\log _{2} x}$
Example
(20.10): Find $\frac{d y}{d x}$ for the following functions:
5) $y=(\sin (x))^{\cos (x)}$

Solution:

$$
\begin{aligned}
& \Rightarrow \ln (y)=\ln (\sin (x))^{\cos (x)} \\
& \Rightarrow \ln (y)=\cos (x) \ln (\sin (x)) \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}=\cos (x) \cdot \frac{1}{\sin (x)} \cdot \cos (x)+\ln (\sin (x)) \cdot(-\sin (x)) \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}=\cos (x) \cot (x)-\sin (x) \ln (\sin (x)) \\
& \Rightarrow \frac{d y}{d x}=y(\cos (x) \cot (x)-\sin (x) \ln (\sin (x))) \\
& \quad=(\sin (x))^{\cos (x)}(\cos (x) \cot (x)-\sin (x) \ln (\sin (x)))
\end{aligned}
$$

2) $y^{x}=x^{y}$

Solution:

$$
\begin{aligned}
& \ln \left(y^{x}\right)=\ln \left(x^{y}\right) \Rightarrow x \ln (y)=y \ln (x) \Rightarrow x \cdot \frac{1}{y} \frac{d y}{d x}+\ln (y)=y \frac{1}{x}+\ln (x) \frac{d y}{d x} \\
& \frac{x}{y} \frac{d y}{d x}-\ln (x) \frac{d y}{d x}=\frac{y}{x}-\ln (y) \Rightarrow \frac{d y}{d x}=\frac{\frac{y}{x}-\ln (y)}{\frac{x}{y}-\ln (x)}
\end{aligned}
$$

Exercises (20.9): Find $\frac{d y}{d x}$ for the following functions:

1) $y=(x) \sin (x)$
2) $y=x x$
3) $y=x x_{2}$

20.7 Derivatives of Hyperbolic Functions:

$$
\begin{aligned}
\frac{d}{d x}(\sinh (u)) & =\cosh (u) \cdot \frac{d u}{d x} \\
\frac{d}{d x}(\cosh (u)) & =\sinh (u) \cdot \frac{d u}{d x} \\
\frac{d}{d x}(\tanh (u)) & =\operatorname{sech}^{2}(u) \cdot \frac{d u}{d x}
\end{aligned}
$$

1)
2)
3)
4) $\frac{d}{d x}(\operatorname{coth}(u))=-\operatorname{csch}^{2}(u) \cdot \frac{d u}{d x}$
5) $\frac{d}{d x}(\operatorname{sech}(u))=-\operatorname{sech}(u) \tanh (u) \cdot \frac{d u}{d x}$

$$
\frac{d}{d x}(\operatorname{csch}(u))=-\operatorname{csch}(u \quad \text { 6) } \quad \text { coth }(u) .
$$

$$
d x \text { Proof: }
$$

1

$$
\begin{aligned}
& y=\sinh (u)=\frac{e^{u}-e^{-u}}{2} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(e^{u} \cdot \frac{d u}{d x}+e^{-u} \cdot \frac{d u}{d x}\right)=\frac{1}{2}\left(e^{u}+e^{-u}\right) \frac{d u}{d x}=\cosh (u) \cdot \frac{d u}{d x}
\end{aligned}
$$

Example (20.11): Find $\frac{d y}{d x}$ for the following functions:

$$
\begin{aligned}
& y=\sinh ^{2}(5 x) \\
& \begin{aligned}
\Rightarrow \frac{d y}{d x} & =2 \sinh (5 x) \cdot \cosh (5 x) \cdot 5 \\
& =10 \sinh (5 x) \cosh (5 x)
\end{aligned}
\end{aligned}
$$

1)
2) $y=\tanh \left(x^{3}\right) \operatorname{coth}\left(x^{2}\right)$

$$
\Rightarrow \frac{d y}{d x}=\tanh \left(x^{3}\right)\left(-\operatorname{csch}^{2}\left(x^{2}\right)\right) \cdot(2 x)+\operatorname{coth}\left(x^{2}\right)\left(\operatorname{sech}^{2}\left(x^{3}\right)\right) \cdot\left(3 x^{2}\right)
$$

$$
y=\cosh \left(e^{2 x}\right)
$$

3) $\Rightarrow \frac{d y}{d x}=\sinh \left(e^{2 x}\right) \cdot e^{2 x} \cdot 2=2 e^{2 x} \sinh \left(e^{2 x}\right)$

$$
y=\ln (\sinh (2 x))
$$

$=\Rightarrow \frac{d y}{d x}=\frac{1}{\sinh (2 x)} \cdot \cosh (2 x) \cdot 2=\frac{2 \cosh (2 x)}{\sinh (2 x)} \quad 2 \operatorname{coth}(2 x)$

Exercises (20.10): Find $\frac{d y}{d x}$ for the following functions:

1) $y=\operatorname{sech}^{3}(2 x)$
2) $y=\sinh (\tan (x))$
3) ${ }^{y=\cosh \left(x e^{\sinh (x)}\right)}$

20.8 Derivatives of the Inverse Hyperbolic Functions:

$$
\begin{aligned}
\frac{d}{d x}\left(\sinh ^{-1}(u)\right) & =\frac{1}{\sqrt{u^{2}+1}} \cdot \frac{d u}{d x} \\
\frac{d}{d x}\left(\cosh ^{-1}(u)\right) & =\frac{1}{\sqrt{u^{2}-1}} \cdot \frac{d u}{d x} \\
\frac{d}{d x}\left(\tanh ^{-1}(u)\right) & =\frac{1}{1-u^{2}} \cdot \frac{d u}{d x}
\end{aligned}
$$

1)
2)

$$
\begin{aligned}
& d \\
& \frac{d}{d x}\left(\operatorname{sech}^{-1}(u)\right)=\frac{1}{1-u^{2}} \cdot \frac{d u}{d x} \cdot \frac{-1}{u \sqrt{1-u^{2}}} \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(\operatorname{csch}^{-1}(u)\right)=\frac{-1}{|u| \sqrt{1+u^{2}}} \cdot \frac{d u}{d x}
\end{aligned}
$$

5)
6)

Proof: 1

Let $y=\sinh ^{-1}(u)=\ln \left(u+\mathrm{p}_{\left.u^{2}+1\right)}\right.$
$\because \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
$\begin{aligned} \Rightarrow \frac{d y}{d x} & =\frac{1}{u+\sqrt{u^{2}+1}} \cdot\left(1+\frac{2 u}{2 \sqrt{u^{2}+1}}\right) \cdot \frac{d u}{d x} \\ & =\frac{1}{u+\sqrt{u^{2}+1}} \cdot\left(\frac{u+\sqrt{u^{2}+1}}{\sqrt{u^{2}+1}}\right) \cdot \frac{d u}{d x}=\frac{1}{\sqrt{u^{2}+1}} \cdot \frac{d u}{d x}\end{aligned}$

Example (20.12): Find $\frac{d y}{d x}$ for the following functions:
$\begin{aligned} & y=\tanh ^{-1}(\cos (x)) \\ & \Rightarrow y^{\prime}=\frac{1}{1-\cos ^{2}(x)} \cdot(-\sin (x))=\frac{-\sin (x)}{1-\cos ^{2}(x)}=\frac{-1}{\sin (x)}\end{aligned}$

$$
\begin{gathered}
=\frac{-2 \cos (2)}{\sin (2 x) \overline{\cos (2 x)}}=\begin{array}{c}
-2 \\
\sin (2 x)
\end{array} \\
y=\operatorname{sech}^{-1}(\sin (2 x)) \\
\Rightarrow \frac{d y}{d x}=\frac{-1}{\sin (2 x) \sqrt{1-\sin ^{2}(2 x)}} \cdot(2 \cos (2 x))=\frac{-2 \cos (2 x)}{\sin (2 x) \sqrt{\cos ^{2}(2 x)}}
\end{gathered}
$$

$$
\begin{aligned}
& y=\cosh ^{-1}\left(e^{x}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{\left(e^{x}\right)^{2}-1}} \cdot e^{x}=\frac{e^{x}}{\sqrt{e^{2 x}-1}} \\
& y=\operatorname{sech}^{-1}(\cos (x)) \\
& \Rightarrow \frac{d y}{d x}=\frac{-1}{\cos (x) \sqrt{1-\cos ^{2}(x)}} \cdot(-\sin (x))=\sec (x)
\end{aligned}
$$

3)
4)

$$
\begin{aligned}
& y=e^{\operatorname{csch}^{-1}(x)+\operatorname{coth}^{-1}(x)} \\
& \Rightarrow \frac{d y}{d x}=e^{\operatorname{csch}^{-1}(x)+\operatorname{coth}^{-1}(x)} \cdot\left(\frac{-1}{|x| \sqrt{1+x^{2}}}+\frac{1}{1-x^{2}}\right)
\end{aligned}
$$

Exercises (20.11): Find $\frac{d y}{d x}$ for the following functions:

1) $y=\operatorname{coth}^{-1}\left(\frac{1}{x}\right)$
2) $y=e_{\tanh -1(2 x)}$
$3)^{y}=\ln \left(\operatorname{coth}^{-1}\left(e^{\sin (x)}\right)\right)$

21. L'H'opital's Rule:

Suppose that $f\left(x_{\circ}\right)=g\left(x_{\circ}\right)$ and that the functions f and g are both differentiable on an open interval (a, b) that contains the point x.

Suppose also $g^{0} 6=0$ at every point in (a, b) except possibly x_{0}, then

$$
\lim _{x \rightarrow x_{\circ}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{\circ}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists.
i. The Form $\left(\frac{0}{0} \& \frac{\infty}{\infty}\right)$

Example (21.1): Find $\lim \frac{\sqrt{1+x}-1}{x}=\frac{0}{0}$
${ }_{x \rightarrow 0}$ Solution:
Example (21.2): Find $\lim \frac{1-\cos (x)}{x+x^{2}}=\frac{0}{0}$
$x \rightarrow 0$ Solution:
$\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1}=0$
Example (21.3): Find $\lim \frac{x^{4}-81}{x-3}=\frac{0}{0}$
$x \rightarrow 3$ Solution:
$\lim _{x \rightarrow 3} \frac{x^{4}-81}{x-3}=\lim _{x \rightarrow 3} \frac{4 x^{3}}{1}=108$
Example (21.4): Find $\frac{x^{2}}{e^{x}}={ }_{\infty}^{\infty} \lim$

Solution:

$\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=\frac{2}{\infty}=0$

Exercises (21.1): Find

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\sec (x)-\sec (a)}{x-a} \quad \text { 1)2) } \quad \lim \quad{ }_{x \rightarrow 0} \frac{e^{x}-1}{x} \\
& \lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)-2 \sin (\theta)}{\sin (3 \theta)-3 \sin (\theta)} \text { 3)4) lim } \\
& x \rightarrow-\frac{\pi}{2} \\
& \frac{\tan (x)}{1+\tan (x)}
\end{aligned}
$$

ii. The Form $(0 . \infty \& \infty-\infty)$

Example (21.5): Find $\lim x^{2} e^{-x}=0 . \infty_{x \rightarrow \infty}$ Solution:

$$
\lim _{x \rightarrow \infty} x^{2} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=\frac{2}{\infty}=0
$$

Example (21.6): Find $\lim \left(\csc (x)-\frac{1}{x}\right)=\infty-\infty$
$x \rightarrow 0$ Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\csc (x)-\frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{x-\sin (x)}{x \sin (x)}\right)=\frac{0}{0} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x \cos (x)+\sin (x)}=\lim _{x \rightarrow 0} \frac{\sin (x)}{\cos (x)+\cos (x)-x \sin (x)}=\frac{0}{2}=0
\end{aligned}
$$

iii. The Form $\left.0^{0}, \infty^{0}, 1^{\infty}\right)$

Example (21.7): Find $\lim (\cos (x))^{\frac{1}{x^{2}}}=1^{\infty}$
$x \rightarrow 0$ Solution:
Let $^{y}=(\cos (x))^{\frac{1}{x^{2}}} \Rightarrow \ln (y)=\frac{1}{x^{2}} \ln (\cos (x)) \Rightarrow \lim _{x \rightarrow 0} \ln (y)=\lim _{x \rightarrow 0} \frac{1}{x^{2}} \ln (\cos (x))$
$=\lim _{x \rightarrow 0} \frac{-\sin (x)}{2 x \cos (x)}=\lim _{x \rightarrow 0} \frac{-\cos (x)}{2(\cos (x)-x \sin (x))}=-\frac{1}{2}$
$\Rightarrow \lim _{x \rightarrow 0} \ln (y)=-\frac{1}{2} \Rightarrow \ln \left(\lim _{x \rightarrow 0} y\right)=-\frac{1}{2}$
$\Rightarrow e^{\ln \left(\lim _{x \rightarrow 0} y\right)}=e^{-\frac{1}{2}} \Rightarrow \lim _{x \rightarrow 0} y=e^{-\frac{1}{2}}$
$\therefore \lim _{x \rightarrow 0}(\cos (x))^{\frac{1}{x^{2}}}=e^{-\frac{1}{2}}$

Example (21.8): Find $\lim (\sin (x)-\cos (x))^{\tan (x)}=1^{\infty}$

$x \rightarrow \pi_{2}$ Solution:

$$
\begin{aligned}
& \text { Let } y=(\sin (x)-\cos (x))_{\tan (x) \Rightarrow \ln (y)=\tan (x) \ln (\sin (x)-\cos (x))}^{\Rightarrow} \begin{aligned}
\Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} \ln (y)= & \lim _{x \rightarrow \frac{\pi}{2}} \tan (x) \ln (\sin (x)-\cos (x)) \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (x) \ln (\sin (x)-\cos (x))}{\cos (x)} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (x)\left(\frac{\cos (x)+\sin (x)}{\sin (x)-\cos (x)}\right)+\cos (x) \ln (\sin (x)-\cos (x))}{-\sin (x)}=-1
\end{aligned} \\
& \Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} \ln (y)=-1 \Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} y=e^{-1}=\frac{1}{e}
\end{aligned} \begin{aligned}
& \therefore \lim _{x \rightarrow \frac{\pi}{2}}(\sin (x)-\cos (x))^{\tan (x)}=\frac{1}{}
\end{aligned}
$$

Exercises (21.2): Prove that

1) $\lim _{x \rightarrow \frac{\pi}{2}}(\tan (x))^{\cos (x)}=1$
2) $x \rightarrow 0$ (1+x) $)^{\frac{1}{x}}=e_{\text {lim }}$

Exercises (21.3): Find

3) $\lim _{x \rightarrow \frac{\pi}{2}}(2 x-\pi) \sec (x$
1))
4) $\lim \left(\sec ^{3}(x)\right)^{\cot (x)}$
$\lim (1-x)^{\ln (x)}$
$x \rightarrow 0$
$x \rightarrow 1$

22. Applications of Derivative:

i. Engineering Applications:

Example (22.1): Find the slope of the parabola $y=x^{2}$ at $x=2$.
Solution:
$\because m=y^{0}=2 x$
$\left.\therefore m\right|_{x=2}=2 \times 2=4$

$$
\sqrt{ }
$$

Example (22.2): Find the equation for the tangent to the curve $y=x+1$ at $(1,2)$ Solution:
$y=(x+1)^{\frac{1}{2}} \Rightarrow y^{\prime}=\frac{1}{2}(x+1)^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x+1}}$
$\left.\therefore m\right|_{x=1}=\frac{1}{2 \sqrt{2}}$
$\because y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-2=\frac{1}{2 \sqrt{2}}(x-1) \Rightarrow y=\frac{1}{2 \sqrt{2}}(x-1)+2$

Remark (22.1):

$$
-1
$$

The slope for the normal $=$ \qquad

Example (22.3): Find the equation for the normal to the curve $x^{2}-x y+y^{2}=7$ at the point $(-1,2)$

Solution:

$2 x-\left(x \frac{d y}{d x}+y\right)+2 y \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{y-2 x}{2 y-x}$
$\left.\therefore m\right|_{(x, y)=(-1,2)}=\frac{4}{5}$
-5
\therefore The slope of the normal= \qquad
$\therefore y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y=\frac{4}{4}(x+1)+2$

Exercises (22.1):

1) Find the equation for the tangent and normal to the curve $y=x^{2}+2 x+1$ at intersection point with vertical line $(y-a x i s)$.
2) Find the equation for the tangent to the curve $y=-x^{2}+2 x+3$ at intersection point with horizontal line (x-axis).

ii. Physical Applications:

Definition (22.1): If $s(t)$ is the position function of a particle moving on a coordinate line, then the velocity of the particle at time t is defined by.

$$
v(t)=\frac{d s}{d t}
$$

Definition (22.2): If $s(t)$ is the position function of a particle moving on a coordinate line, then the acceleration of the particle at time t is defined by.

$$
a(t)=\frac{d v}{d t} \quad \text { or } \quad a(t)=\frac{d^{2} s}{d t^{2}}
$$

Example (22.4): Find the body's velocity and acceleration at time $t=2$ if the position $s(t)=4+2 t+t^{2}$ of body moving along a coordinate line, where s is in meters and t is in seconds.

Solution:

$v(t)=\frac{d s}{d t}=2+\left.2 t \Rightarrow v\right|_{t=2}=2+4=6 \mathrm{~m} / \mathrm{sec}$
$a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}=2 \mathrm{~m} / \mathrm{sec}$

23. Maximum, Minimum and Mean Values:

Definition (23.1): A function f has a local maximum value at an interior point c if $f(c) \geq f(x)$, $\forall x$. And f has a local minimum value at interior point e if $f(e) \leq f(x), \forall x$

Theorem (23.1):

If a function f has a local maximum or local minimum value at point c and $f 0$ is defined at c, then $f^{0}(c)=0$

Remark (23.1):

1. If $f^{0}(c)=0$ and $f^{\circ 0}(c)<0$, then f has local maximum at $x=c$
2. If $f^{0}(c)=0$ and $f^{\circ 0}(c)>0$, then f has local minimum at $x=c$

Rolle's Theorem:

Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b) and If $f(a)=f(b)=0$ then there is at least one number c in (a, b) such that $f^{\circ}(c)=0$.

Example (23.1): Find all values of c which satisfy the Rolle's theorem of the function $f(x)=\frac{1}{3} x^{3}-3 x \quad, \quad-3 \leq x \leq 3$

Solution:

The polynomial function $f(x)=\frac{1}{3} x^{3}-3 x$ is continuous at every point of the interval $[-3,3]$ and differentiable at every point of the interval $(-3,3)$.
$f(3)=\frac{27^{\kappa^{9}}}{3}-9=9-9=0$
$f(-3)=\frac{-27^{\sim-9}}{3}+9=-9+9=0$
$\therefore f(3)=f(-3)=0$
\therefore By Rolle's Theorem, $\exists c \in(-3,3) 3 f^{\circ}(c)=0$
$\therefore f^{\prime}(x)=\frac{3}{3} x^{2}-3$
$\Rightarrow f^{\prime}(c)=c^{2}-3=0 \Rightarrow c^{2}=3 \Rightarrow c=\mp \sqrt{3}$

\therefore There exists two numbers $c=3$ and $c=-3$ such that $f_{0}(\quad 3)=0$ and $f_{0}(-3)=0$

The Mean Value Theorem:

Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b), then there is at least one number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Example (23.2): Find all values of c which satisfy the mean value theorem for the following functions.

$$
\frac{1}{2} \leq x \leq 2
$$

$$
f(x)=x+\frac{1}{x} \quad, \begin{aligned}
& \text { 2) }, \quad 1 \leq x \leq 3 \\
& \text { 3) } f(x)=4-x^{2} \quad, \quad-1 \leq x \leq 1
\end{aligned}
$$

$$
f(x)=\sqrt{x-1} \quad \text { Solution: } 1
$$

The function $f(x)=x+\frac{1}{x}$ is continuous on $\left[\frac{1}{2}, 2\right]$ and differentiable on $\left.\frac{1}{2}, 2\right)$.
$f\left(\frac{1}{2}\right)=\frac{1}{2}+\frac{1}{\frac{1}{2}}=\frac{1}{2}+2=\frac{5}{2}$
$f(2)=2+\frac{1}{2}=\frac{5}{2}$
$\therefore \frac{f(b)-f(a)}{b-a}=\frac{\frac{5}{2}-\frac{5}{2}}{2-\frac{1}{2}}=\frac{0}{2-\frac{1}{2}}=0$
$\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}$
\therefore By mean value theorem, $\exists c \in\left(\frac{1}{2}, 2\right) \ni f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$\Rightarrow 1-\frac{1}{c^{2}}=0 \Rightarrow \frac{c^{2}-1}{c^{2}}=0 \Rightarrow c^{2}-1=0 \Rightarrow c$
$\therefore c=1 \in\left(\frac{1}{2}, 2\right) \ni f^{\prime}(1)=\frac{f(b)-f(a)}{b-a}=0 \quad=1$ and $c=-1$

Definition (23.2): Let f be defined on the interval I , and let x_{1} and x_{2} denote numbers in the interval I, then

1. f is increasing on the interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$
2. f is decreasing on the interval I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$

Theorem (23.2):

Let f be a function that is continuous on a closed interval $[a, b]$ and differentiable on the open interval (a, b), then

1. If $f^{0}(x)>0$ for every value of x in (a, b), then f is increasing function.
2. If $f^{\circ}(x)<0$ for every value of x in (a, b), then f is decreasing function.
3. If $f^{0}(x)=0$ for some x in (a, b), then x is critical point.

Example (23.3): Let $f(x)=2 x^{2}+4$
Solution:
$\because f^{0}(x)=4 x$
$\Rightarrow f^{0}(x)>0, \forall x>0 \Rightarrow f$ increasing function.
$\Rightarrow f^{0}(x)<0, \forall x<0 \Rightarrow f$ decreasing function.
$\Rightarrow f^{0}(x)=0$ if $x=0 \Rightarrow x$ is critical point.

Theorem (23.3):

Let f^{00} be twice differentiable on an open interval I, then

1. If $f^{00}(x)>0$ on I, then f is concave up on I.
2. If $f^{00}(x)<0$ on I, then f is concave down on I.
3. If $f^{00}(x)=0$ for some x in I, then x is inflection point.

24. Curve Sketching With \mathbf{y}^{0} and y^{00}

Steps of Graphing:

1. Find y^{0} and y^{00}.
2. Find y^{0} is positive, negative and zero.
3. Find y^{00} is positive, negative and zero.
4. Make summary table.
5. Draw the graph.

Example (24.1): Sketch the graph of $y=x^{3}-3 x^{2}+4$
Solution:
$\Rightarrow y^{0}=3 x^{2}-6 x$
\Rightarrow If $y^{0}=0 \Rightarrow 3 x^{2}-6 x=0 \Rightarrow x(3 x-6)=0 \Rightarrow x=0 \& x=2$
$\therefore(0,4)$ and $(2,0)$ are critical points.

$\Rightarrow y^{00}=6 x-6$
If $y^{00}=0 \Rightarrow 6(x-1)=0 \Rightarrow x=1$
$\therefore(1,2)$ is inflection point.

x	y	$y 0$	$y 00$	Behavior
-	0	9	- 12	concave down
1	4	0	-6	local maximum
1	2	-	0	inflection point
2	0	0	6	local minimum
3	4	9	12	concave up

24.1 Asymptotes:

Definition (24.1): A line $y=b$ is a horizontal asymptote of the graph of a function $y=$ $f(x)$ if either $\lim x \rightarrow \infty \quad f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$
A line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if one of the following conditions is true; $\lim f(x)=\mp \infty, \lim f(x)=\mp \infty, \lim f(x)=\mp \infty$

$$
x \rightarrow a \quad x \rightarrow a^{+} \quad x \rightarrow a^{-}
$$

Example (24.2): Find the asymptotes of the curve $y=\frac{1}{x-1}$ Solution:

1) Horizontal asymptote

$$
\Rightarrow \lim _{x \rightarrow \infty} \frac{1}{x-1}=0 \Rightarrow y=0 \text { is } \mathcal{H} . \mathcal{A}
$$

2) Vertical asymptote

$$
\Rightarrow \lim _{x \rightarrow 1} \frac{1}{x-1}=\infty \Rightarrow x=1 \text { is } \mathcal{V} \cdot \mathcal{A}
$$

24.2 Oblique (Slant) Asymptotes:

If the function is $\frac{p(x)}{q(x)}$ such that the degree of the numerator exceeds the degree of the denominator by one, then the graph of $\frac{p(x)}{}$ will have an oblique asymptote by division of $p(x)$ by $q(x)$ to obtain

$$
\frac{p(x)}{q(x)}=(a x+b)+\frac{r(x)}{q(x)}
$$

Where $(a x+b)$ is the oblique asymptote.
Example (24.3): Find the oblique asymptote (O. A) for the function $y=\frac{x^{2}-3}{2 x-4}$

Solution:

x
$\therefore y=\frac{x}{2}+1$ is $\mathcal{O} . \mathcal{A}$

Example (24.4): Find the oblique asymptote (O. A) for the function $y=\frac{x^{2}+1}{x}$ Solution:
$\therefore y=x$ is 0. A

Example (24.5): Sketch the graph of $y=x+\frac{1}{x}$ Solution:
$\because y^{\prime}=1-\frac{1}{x^{2}}$
$\Rightarrow y^{\prime}=0 \Rightarrow 1-\frac{1}{x^{2}}=0 \Rightarrow \frac{x^{2}-1}{x^{2}}=0 \Rightarrow x^{2}-1=0 \Rightarrow x=1 \& x=-1$
$\therefore(1,2)$ and $(-1,-2)$ are critical points.

$\because y^{\prime \prime}=\frac{2}{x^{3}}$
$\Rightarrow y^{\prime \prime} \neq 0 \Rightarrow$ there is no inflection point.
$\Rightarrow y^{00}>0$ if $x>0 \Rightarrow y$ is concave up.
$\Rightarrow y^{00}<0$ if $x<0 \Rightarrow y$ is concave down.

Asymptotes:

1. Horizontal asymptote
$\lim _{x \rightarrow \infty} x+\frac{1}{x}=\infty \Rightarrow$ there is no horizontal asymptote
2. Vertical asymptote
$\because \lim _{x \rightarrow 0} x+\frac{1}{x}=\infty \Rightarrow x=0$ is Vertical asymptote
3. Oblique asymptote

$\therefore y=x$ is oblique asymptote				
x	y	$y 0$	$y 00$	Behavior
-2	$\frac{-5}{2}$	$\frac{3}{4}$	$\frac{-1}{4}$	concave down
-1	-2	0	-2	local maximum

-	-	-	-	decreasing
0.5	2.5	3	16	decreasing
0.5	2.5	-	16	3
1	2	0	2	local minimum
2	$\frac{5}{2}$	$\frac{3}{4}$	$\frac{1}{4}$	concave up

Exercises (24): Sketch a graph of the following functions (using y^{0} and y^{00}):

1) $y=x^{3}-3 x+3$
2) $y=\frac{x^{2}}{x-1}$
3) $y=\frac{(x-1)^{3}}{x^{2}}$

CALCULUSI

Thi-Qar University

College of Education for Pure Scinces

Dr. Mayada Gassab Mohammed

Mathematics Department

1

Integration

1.1 Definite Integral:

Given a function $f(x)$ that is continuous on the interval $[a, b]$, we divide the interval into " n "subinterval of equal width Δx, and from each interval choose point $x_{i}^{*}=a+(\Delta x) i$.

Then the definite integral of $f(x)$ from a to b is:

b	

Properties of the definite Integral:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
& \int_{a}^{a} f(x) d x=0
\end{aligned}
$$

1)
2)
3) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x, k$ is any number.
4) ${ }_{a}(f(x) \mp g(x)) d x={\underset{a}{a}(x) d x \mp \underset{a}{g}(x) d x}^{f}$
5) $\begin{gathered}\mathrm{Z}_{b} \\ \\ a\end{gathered} \mathrm{Z}(x) d x=\underset{a}{f(x) d x+} \begin{array}{r}\mathrm{Z}_{b} \\ f(x) d x \\ r\end{array}$
6) $\quad \int_{a}^{b} k d x=k(b-a), k$ is any number.

1
7) If $f(x) \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq 0$
8) If $f(x) \geq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
9) If $\alpha \leq f(x) \leq \beta$ for $a \leq x \leq b$, then ${ }^{\alpha(b-a) \leq \int_{a}^{b} f(x) d x \leq \beta(b-a)}$
10) $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$

$$
\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

$$
\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

$$
\sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Remark (1.1):
1)
3)

Example (1): Evaluate the integral. $\int_{0}^{3}\left(x^{3}-6 x\right) d x$ by using definition.
Solution:
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
$a=0, b=3, \Delta x=\frac{b-a}{n}=\frac{3-0}{n}=\frac{3}{n}$

$$
x_{i}^{*}=\underline{3 i}
$$

$\therefore x_{1}^{*}=\frac{3}{n}, x_{2}^{*}=\frac{6}{n}, x_{3}^{*}=\frac{9}{n}, \cdots$, in general
$\therefore \int_{0}^{3}\left(x^{3}-6 x\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(x_{i}^{*}\right)^{3}-6 x_{i}^{*}\right) \frac{3}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(\frac{3 i}{n}\right)^{3}-6\left(\frac{3 i}{n}\right)\right) \frac{3}{n}$
$=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{81}{n^{4}} i^{3}-\frac{54}{n^{2}} i\right)=\lim _{n \rightarrow \infty}\left(\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3}-\frac{54}{n^{2}} \sum_{i=1}^{n} i\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{81}{n^{4}}\left(\frac{n(n+1)}{2}\right)^{2}-\frac{54}{n^{2}}\left(\frac{n(n+1)}{2}\right)\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{81}{n^{4}}\left(\frac{n^{4}\left(1+\frac{1}{n}\right)^{2}}{4}\right)-\frac{54}{n^{2}}\left(\frac{n^{2}\left(1+\frac{1}{n}\right)}{2}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{81}{4}\left(1+\frac{1}{n}\right)^{2}-\frac{54}{2}\left(1+\frac{1}{n}\right)\right)=\left(\frac{81}{4}\left(1+\frac{1}{\infty}\right)^{2}-\frac{54}{2}\left(1+\frac{1}{\infty}\right)\right. \\
& =\frac{81}{4}-\frac{54}{2}=-\frac{27}{4}
\end{aligned}
$$

1.2 Indefinite Integral:

Definition (2.1): A function $F(x)$ is called an anti-derivative of a function $f(x)$ if $F^{0}(x)=f(x)$. If $F(x)$ is any anti-derivative of $f(x)$ then the most general anti-derivative of $f(x)$ is called an indefinite integral and denoted, $\mathrm{Z} f(x) d x=F(x)+C, C$ is any constant.

Z

In this definition the is called the integral symbol, $f(x)$ is called the integrand, x is called the integration variable and the " C " is called the constant of integration.

Properties of the Indefinite Integral:
Z
Z

1) $k f(x) d x=k f(x) d x, k$ is any number

Z Z
2) $-f(x) d x=-f(x) d x$

$$
\begin{array}{ll}
\mathrm{Z} & \mathrm{Z} \mathrm{Z} \mathrm{Z}
\end{array}
$$

3) $(f(x) \mp g(x)) d x=f(x) d x \mp \quad g(x) d x$

Z
4) $k d x=k x+C, k$ and C are constant Remark (2.1):

$$
\begin{aligned}
& \frac{d}{d x} \int_{a}^{u(x)} f(t) d t=u^{\prime}(x) f(u(x)) \\
& \frac{d}{d x} \int_{v(x)}^{b} f(t) d t=-v^{\prime}(x) f(v(x))
\end{aligned}
$$

1)
2)
3) $\frac{d}{d x} \int_{v(x)}^{u(x)} f(t) d t=u^{\prime}(x) f(u(x))-v^{\prime}(x) f(v(x))$

Example (1): Find the differentiate for each the following.

$$
\begin{aligned}
& g(x)=\int_{-4}^{2 x} e^{2 t} \cos ^{2}(1-5 t) d t \\
& g(x)=\int_{x^{2}}^{1} \frac{t^{2}+1}{t-1} d t \\
& g(x)=\int_{\sin (x)}^{3 x} t^{2} \sin \left(1+t^{2}\right) d t
\end{aligned}
$$

1)
2)
3)

Solution:

$$
\begin{aligned}
g^{\prime}(x) & =2 e^{4 x} \cos ^{2}(1-10 x) \\
g^{\prime}(x) & =-2 x\left(\frac{x^{4}+1}{x^{2}-1}\right) \\
g^{\prime}(x) & =3\left(9 x^{2} \sin \left(1+9 x^{2}\right)\right)-\cos (x)\left(\sin ^{2}(x) \sin \left(1+\sin ^{2}(x)\right)\right) \\
& =27 x^{2} \sin \left(1+9 x^{2}\right)-\cos (x) \sin ^{2}(x) \sin \left(1+\sin ^{2}(x)\right)
\end{aligned}
$$

1)
2)
3)

Theorem (2.1):

$$
\begin{array}{ll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C & , n \neq-1 \\
\int(g(x))^{n} g^{\prime}(x) d x=\frac{(g(x))^{n+1}}{n+1}+C & , n \neq-1
\end{array}
$$

1.
2.

Example (2): Evaluate each of the following integrals.

$$
\begin{gathered}
\int d x=x+C \\
\int 7 d x=7 x+C \\
\int x^{5} d x=\frac{x^{6}}{6}+C
\end{gathered}
$$

2)

$$
\begin{aligned}
& \int x^{-3} d x=\frac{x^{-2}}{-2}+C \\
& \int \sqrt{x} d x=\int x^{\frac{1}{2}} d x=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+C \\
& \int \frac{1+x}{x^{3}} d x=\int\left(\frac{1}{x^{3}}+\frac{x}{x^{3}}\right) d x=\int\left(\frac{1}{x^{3}}+\frac{1}{x^{2}}\right) d x=\int \frac{1}{x^{3}} d x+\int \frac{1}{x^{2}} d x \\
& =\int x^{-3} d x+\int x^{-2} d x=\frac{x^{-2}}{-2}+\frac{x^{-1}}{-1}+C=\frac{-1}{2 x^{2}}-\frac{1}{x}+C \\
& \int(x+1)^{2} d x=\int\left(x^{2}+2 x+1\right) d x=\int x^{2} d x+2 \int x d x+\int d x \\
& =\frac{x^{3}}{3}+2 \frac{x^{2}}{2}+x+C
\end{aligned}
$$

3)
4)
5)
6)
7)

Exercises (2.1): Evaluate each of the following integrals.

$$
\begin{aligned}
& \int x\left(1+x^{3}\right) d x \\
& \int\left(2+x^{2}\right)^{2} d x \\
& \int\left(1+x^{2}\right)(2-x) d x \quad \int \frac{1}{2 x^{3}} d x \\
& \text { 1)2)3) } \int x^{\frac{1}{3}}(2-x)^{2} d x \\
& \text { 4)5)6) } \quad \int \frac{x^{5}+2 x^{2}-1}{x^{4}} d x
\end{aligned}
$$

Example (3): Evaluate each of the following integrals.

1) $\int \frac{x d x}{\sqrt{\left(1-2 x^{2}\right)^{3}}}$
2) $\int\left(2 x^{3}+1\right)^{7} x^{2} d x$
3) $\int\left(x^{2}+3 x+1\right)^{5}(2 x+3) d x$

Solution:

$$
\begin{aligned}
& \int \frac{x d x}{\sqrt{\left(1-2 x^{2}\right)^{3}}}=\int x\left(1-2 x^{2}\right)^{-\frac{3}{2}} d x \times \frac{-4}{-4}=\frac{-1}{4} \int(-4 x)\left(1-2 x^{2}\right)^{-\frac{3}{2}} d x \\
& =\frac{-1}{4}\left(\frac{\left(1-2 x^{2}\right)^{-\frac{1}{2}}}{-\frac{1}{2}}\right)+C=\frac{1}{2 \sqrt{1-2 x^{2}}}+C \\
& \int\left(2 x^{3}+1\right)^{7} x^{2} d x=\int\left(2 x^{3}+1\right)^{7} x^{2} d x \times \frac{6}{6}=\frac{1}{6} \int\left(2 x^{3}+1\right)^{7}\left(6 x^{2}\right) d x \\
& =\frac{1}{6}\left(\frac{\left(2 x^{3}+1\right)^{8}}{8}\right)+C=\frac{1}{48}\left(2 x^{3}+1\right)^{8}+C
\end{aligned}
$$

1)

$$
\text { 3) } \int\left(x^{2}+3 x+1\right)^{5}(2 x+3) d x=\frac{\left(x^{2}+3 x+1\right)^{6}}{6}+C
$$

Theorem (2.2):
Suppose $f(x)$ is continuous function on $[a, b]$ and also suppose that $F(x)$ is any antiderivative for $f(x)$, then

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

Example (4): Evaluate each of the following integrals.

$$
\begin{aligned}
& \int_{2}^{10} \frac{3 d x}{\sqrt{5 x-1}} \\
& \int_{-1}^{3}\left(3 x^{2}-2 x+1\right) d x
\end{aligned}
$$

1)
2)

Solution:

$$
\begin{aligned}
& \int_{2}^{10} \frac{3 d x}{\sqrt{5 x-1}}=\int_{2}^{10} 3(5 x-1)^{-\frac{1}{2}} d x \times \frac{5}{5}=\frac{3}{5} \int_{2}^{10} 5(5 x-1)^{-\frac{1}{2}} d x \\
& =\frac{3}{5}\left[\frac{(5 x-1)^{\frac{1}{2}}}{\frac{1}{2}}\right]_{2}^{10}=\frac{6}{5}(\sqrt{49}-\sqrt{9})=\frac{6}{5}(7-3)=\frac{24}{5} \\
& \begin{aligned}
\int_{-1}^{3}\left(3 x^{2}-2 x+1\right) d x & =\int_{-1}^{3} 3 x^{2} d x-\int_{-1}^{3} 2 x d x+\int_{-1}^{3} d x \\
& =3 \int_{-1}^{3} x^{2} d x-2 \int_{-1}^{3} x d x+\int_{-1}^{3} d x \\
& =3\left[\frac{x^{3}}{3}\right]_{-1}^{3}-2\left[\frac{x^{2}}{2}\right]_{-1}^{3}+[x]_{-1}^{3} \\
& =3\left(\frac{27}{3}+\frac{1}{3}\right)-2\left(\frac{9}{2}-\frac{1}{2}\right)+(3+1) \\
& =3\left(\frac{28}{3}\right)-2\left(\frac{8}{2}\right)+4=32-8=24
\end{aligned}
\end{aligned}
$$

1)
2)

Exercises (2.2): Evaluate the following integrals.

$$
\int \frac{3 x d x}{\sqrt{4 x^{2}+5}} \underset{\text { 1) 2) }}{\mathrm{Z}} \quad \int \frac{(1+x)^{2}}{\sqrt{x}} d x \quad \int \frac{d x}{\sqrt{2 x} \sqrt{5+\sqrt{x}}}
$$

1.3 Integration of The Trigonometric Functions:

Z

1) $\sin (u) d u=-\cos (u)+C$

Z
2) $\cos (u) d u=\sin (u)+C$

Z
3) $\quad \tan (u) d u=\ln |\sec (u)|+C$

Z
4)
$\cot (u) d u=\ln |\sin (u)|+C$
Z
5) $\sec (u) d u=\ln |\sec (u)+\tan (u)|+C$

Z
6) $\quad \csc (u) d u=\ln |\csc (u)-\cot (u)|+C$

Z
7) $\sec ^{2}(u) d u=\tan (u)+C$

Z
8) $\csc ^{2}(u) d u=-\cot (u)+C$

Z
9) $\sec (u) \tan (u) d u=\sec (u)+C$

Z
10

$$
\csc (u) \cot (u) d u=-\csc (u)+C
$$

Example (1): Evaluate each of the following integrals.
Z

1) $\sin (2 x) d x$
2) $\int x^{2} \sin \left(x^{3}\right) d x$
3) $\int \frac{d x}{\cos ^{2}(2 x)}$
Z
4) $\quad \sin ^{2}(x) \cos (x) d x$
5) $\int \sqrt{2+\cos (x)} \sin (x) d x$

Solution:

$$
\text { 1) } \int \sin (2 x) d x=\int \sin (2 x) d x \times \frac{2}{2}=\frac{1}{2} \int 2 \sin (2 x) d x=\frac{-1}{2} \cos (2 x)+C
$$

$$
\begin{aligned}
& \int x^{2} \sin \left(x^{3}\right) d x=\int x^{2} \sin \left(x^{3}\right) d x \times \frac{3}{3}=\frac{1}{3} \int\left(3 x^{2}\right) \sin \left(x^{3}\right) d x \\
& =\frac{-1}{3} \cos \left(x^{3}\right)+C \\
& \int \frac{d x}{\cos ^{2}(2 x)}=\int \sec ^{2}(2 x) d x \times \frac{2}{2}=\frac{1}{2} \tan (2 x)+C \\
& \int \sin ^{2}(x) \cos (x) d x=\frac{\sin ^{3}(x)}{3}+C \\
& \int \sqrt{2+\cos (x)} \sin (x) d x=\int \sqrt{2+\cos (x)} \sin (x) d x \times \frac{-1}{-1} \\
& =-\int(2+\cos (x))^{\frac{1}{2}}(-\sin (x)) d x \\
& =-\left(\frac{(2+\cos (x))^{\frac{3}{2}}}{\frac{3}{2}}\right)+C=-\frac{2}{3}(2+\cos (x))^{\frac{3}{2}}+C
\end{aligned}
$$

2)
3)
4)
5)

Exercises (3.1): Evaluate each of the following integrals.
$\int(1+\tan (x))^{2} d x$
2) $\int \frac{d x}{1+\cos (x)}$

1) 3) $\int \frac{\sin (x)+\cos (x)}{\cos (x)} d x$
1) $\int \frac{\cos (x)}{\sin ^{2}(x)} d x$

$$
\int\left(\sqrt{\frac{\sin (x)}{x}}+\sqrt{\frac{x}{\sin (x)}} \cos (x)\right) d x
$$

5)

1.4 Integration of Exponential and Logarithmic Functions:

$$
\begin{aligned}
\int \frac{d u}{u} & =\ln |u|+C \\
\int e^{u} d u & =e^{u}+C \\
\int a^{u} d u & =\frac{a^{u}}{\ln a}+C
\end{aligned}
$$

2)
3)

Example (1): Evaluate the following integrals.

1) $\int \frac{3 x^{2} d x}{x^{3}+5}=\ln \left|x^{3}+5\right|+C$

$$
\begin{aligned}
& \begin{aligned}
& \int \frac{\sin (x)}{2+\cos (x)} d x=\int \frac{\sin (x)}{2+\cos (x)} d x \times \frac{-1}{-1}=-\int \frac{-\sin (x)}{2+\cos (x)} d x \\
&=-\ln |2+\cos (x)|+C
\end{aligned} \\
& \begin{aligned}
\int e^{3 x} d x=\int e^{3 x} d x \times \frac{3}{3}=\frac{1}{3} \int 3 e^{3 x} d x=\frac{1}{3} e^{3 x}+C \\
\int \frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}} d x=\int \frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}} d x \times \frac{2}{2}=\frac{1}{2} \ln \left|e^{2 x}-e^{-2 x}\right|+C \\
\int 10^{3 x} d x=\int 10^{3 x} d x \times \frac{3}{3}=\frac{1}{3} \frac{10^{3 x}}{\ln (10)}+C
\end{aligned} \\
& \begin{array}{r}
\int 3^{x} d x=\frac{3^{x}}{\ln (3)}+C \\
\int \frac{x+1}{x^{2}+2 x+3} d x=\int \frac{x+1}{x^{2}+2 x+3} d x \times \frac{2}{2}=\frac{1}{2} \int \frac{2 x+2}{x^{2}+2 x+3} d x \\
\\
\int \frac{1}{2}\left|x^{2}+2 x+3\right|+C
\end{array} \\
& \text { 2) } \begin{array}{l}
d x \\
x \ln (x)
\end{array} \int \frac{\frac{1}{x}}{\ln (x)} d x=\ln |\ln (x)|+C
\end{aligned}
$$

3)
4)
5)
6)
7)

8)

Z

Example (2): Prove that $\sec (x) d x=\ln |\sec (x)+\tan (x)|+C$ Proof:

$$
\begin{aligned}
\int \sec (x) d x=\int \sec (x) \times \frac{\sec (x)+\tan (x)}{\sec (x)+\tan (x)} d x & =\int \frac{\sec ^{2}(x)+\sec (x) \tan (x)}{\sec (x)+\tan (x)} d x \\
& =\ln |\sec (x)+\tan (x)|+C
\end{aligned}
$$

Exercises (4.1): Prove that.

Z

1) $\tan (x) d x=\ln |\sec (x)|+C$

Z
2) $\cot (x) d x=\ln |\sin (x)|+C$

Z
3) $\csc (x) d x=\ln |\csc (x)-\cot (x)|+C$

Exercises (4.2): Evaluate

$$
\left.\begin{array}{lll}
\int \frac{\sec (\sqrt{x})}{\sqrt{x}} d x & \text { 1)2) } & \int(\tan (2 x)+\sec (2 x))^{2} d x \\
\int \frac{d x}{1-\sin \left(\frac{1}{2} x\right)} & \text { 3)4) 6)7) } & \int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x
\end{array} \quad \text { 5) } \int e^{x} \sqrt{1+e^{x}} d x\right] \text { 8) } \int \sqrt{1-\sqrt{x}} d x .
$$

of Sines and Cosines:

Z

1. We begin with integral of the form; $\sin ^{m}(x) \cos ^{n}(x) d x$ where m and n are nonnegative integers (positive or zero), we can divide the work into three cases:
i. If m is odd, we write m as $2 k+1$ and use the identity $\sin ^{2}(x)=1-\cos ^{2}(x)$ to obtain $\sin ^{m}(x)=\sin ^{2 k+1}(x)=\left(\sin ^{2}(x)\right)^{k} \sin (x)=\left(1-\cos ^{2}(x)\right)^{k} \sin (x)$.

Example (3): Evaluate the integral $\sin ^{3}(x) \cos ^{4}(x) d x$ Solution:

$$
\begin{aligned}
\int \sin ^{3}(x) \cos ^{4}(x) d x & =\int \sin (x) \sin ^{2}(x) \cos ^{4}(x) d x \\
& =\int \sin (x)\left(1-\cos ^{2}(x)\right) \cos ^{4}(x) d x \\
& =\int \sin (x) \cos ^{4}(x)-\sin (x) \cos ^{6}(x) d x \\
& =\int \sin (x) \cos ^{4}(x) d x-\int \sin (x) \cos ^{6}(x) d x \\
& =-\frac{\cos ^{5}(x)}{5}+\frac{\cos ^{7}(x)}{7}+C
\end{aligned}
$$

Z
Example (4): Evaluate the integral $\sin ^{3}(x) \cos ^{2}(x) d x$ (H.W) ii. If n is odd, we write n as $2 k+1$ and use the identity $\cos ^{2}(x)=1-\sin ^{2}(x)$ to obtain, $\cos ^{n}(x)=\cos ^{2 k+1}(x)=\left(\cos ^{2}(x)\right)^{k} \cos (x)=\left(1-\sin ^{2}(x)\right)^{k} \cos (x)$.

Z

Example (5): Evaluate the integral

$$
\sin ^{4}(2 x) \cos ^{3}(2 x) d x \text { Solution: }
$$

$$
\begin{aligned}
\int \sin ^{4}(2 x) \cos ^{3}(2 x) d x & =\int \sin ^{4}(2 x) \cos ^{2}(2 x) \cos (2 x) d x \\
& =\int \sin ^{4}(2 x)\left(1-\sin ^{2}(2 x)\right) \cos (2 x) d x \\
& =\int \cos (2 x) \sin ^{4}(2 x)-\cos (2 x) \sin ^{6}(2 x) d x \\
& =\int \cos (2 x) \sin ^{4}(2 x) d x-\int \cos (2 x) \sin ^{6}(2 x) d x \\
& =\frac{\sin ^{5}(2 x)}{10}-\frac{\sin ^{7}(2 x)}{14}+C
\end{aligned}
$$

Example (6): Evaluate the integral $\sin ^{2}(x) \cos ^{5}(x) d x$

(H.W)
iii. If both m and n are even, we substitute

$$
\sin ^{2}(x)=\frac{1-\cos (2 x)}{2} \quad \cos ^{2}(x)=\frac{1+\cos (2 x)}{2}
$$

Example (7): Evaluate the integral $\quad \int \cos ^{2}(x) \sin ^{4}(x) d x$

Solution:

$$
\begin{aligned}
& \int \cos ^{2}(x) \sin ^{4}(x) d x=\int \cos ^{2}(x)\left(\sin ^{2}(x)\right)^{2} d x \\
& =\int\left(\frac{1+\cos (2 x)}{2}\right)\left(\frac{1-\cos (2 x)}{2}\right)^{2} d x \\
& =\int\left(\frac{1+\cos (2 x)}{2}\right)\left(\frac{(1-\cos (2 x))^{2}}{4}\right) d x \\
& =\frac{1}{8} \int(1+\cos (2 x))\left(1-2 \cos (2 x)+\cos ^{2}(2 x)\right) d x \\
& =\frac{1}{8} \int\left(1-2 \cos (2 x)+\cos ^{2}(2 x)+\cos (2 x)-2 \cos ^{2}(2 x)+\cos ^{3}(2 x)\right) d x \\
& =\frac{1}{8} \int\left(1-\cos (2 x)-\cos ^{2}(2 x)+\cos ^{3}(2 x)\right) d x \\
& =\frac{1}{8}\left[\int d x-\int \cos (2 x) d x-\int \cos ^{2}(2 x) d x+\int \cos ^{3}(2 x) d x\right] \\
& \because \int \cos ^{2}(2 x) d x=\int\left(\frac{1+\cos (4 x)}{2}\right) d x=\frac{1}{2} x+\frac{1}{8} \sin (4 x)+C \\
& \because \int \cos ^{3}(2 x) d x=\int \cos (2 x)\left(1-\sin ^{2}(2 x)\right) d x \\
& =\int \cos (2 x)-\cos (2 x) \sin ^{2}(2 x) d x \\
& =\frac{1}{2} \sin (2 x)-\frac{\sin ^{3}(2 x)}{6}+C \\
& =\frac{1}{8}\left[x-\frac{1}{2} \sin (2 x)-\frac{1}{2} x-\frac{1}{8} \sin (4 x)+\frac{1}{2} \sin (2 x)-\frac{\sin ^{3}(2 x)}{6}+C\right] \\
& \text { Z } \\
& \text { Z }
\end{aligned}
$$

2. The integrals $\sin ^{m}(x) d x$ or_ $\cos ^{m}(x) d x$ where m is nonnegative integer.
i. If m is even we can use the identity;

$$
\begin{gathered}
\sin ^{2}(x)=\left(\frac{1-\cos (2 x)}{2}\right) \\
\text { or } \quad \cos ^{2}(x)=\left(\frac{1+\cos (2 x)}{2}\right) \\
\mathrm{Z} \text { Example }
\end{gathered}
$$

(8): Evaluate the integral $\cos ^{4}(x) d x$ Solution:

$$
\begin{aligned}
\int \cos ^{4}(x) d x & =\int\left(\frac{1+\cos (2 x)}{2}\right)^{2} d x=\frac{1}{4} \int\left(1+2 \cos (2 x)+\cos ^{2}(2 x)\right) d x \\
& =\frac{1}{4}\left[\int d x+2 \int \cos (2 x) d x+\int \cos ^{2}(2 x) d x\right] \\
& =\frac{1}{4}\left[\int d x+\int 2 \cos (2 x) d x+\frac{1}{2} \int(1+\cos (4 x)) d x\right] \\
& =\frac{1}{4}\left[\int d x+\int 2 \cos (2 x) d x+\frac{1}{2}\left(\int d x+\int \cos (4 x) d x\right)\right] \\
& =\frac{1}{4}\left[x+\sin (2 x)+\frac{1}{2}\left(x+\frac{1}{4} \sin (4 x)\right)+C\right] \\
& =\frac{1}{4} x+\frac{1}{4} \sin (2 x)+\frac{1}{8} x+\frac{1}{32} \sin (4 x)+C
\end{aligned}
$$

Example (9): Evaluate the following integrals:

Z

1) $\cos ^{2}(2 x) d x$

$$
\begin{equation*}
\text { 2) } \quad \sin ^{4}(2 x) d x \tag{H.W}
\end{equation*}
$$

ii. If m is odd we write m as $2 k+1$ and use the identity; $\sin ^{2}(x)=1-$

$$
\cos ^{2}(x) \underline{o r} \cos ^{2}(x)=1-\sin ^{2}(x)
$$

Z Example

(10): Evaluate the integral $\cos ^{5}(x) d x$ Solution:

$$
\begin{aligned}
\int \cos ^{5}(x) d x & =\int \cos ^{4}(x) \cos (x) d x=\int\left(1-\sin ^{2}(x)\right)^{2} \cos (x) d x \\
& =\int\left(1-2 \sin ^{2}(x)+\sin ^{4}(x)\right) \cos (x) d x \\
& =\int \cos (x) d x-2 \int \sin ^{2}(x) \cos (x) d x+\int \sin ^{4}(x) \cos (x) d x \\
& =\sin (x)-\frac{2}{3} \sin ^{3}(x)+\frac{\sin ^{5}(x)}{5}+C
\end{aligned}
$$

Z
3. The integrals $\sin (m x) \sin (n x) d x, \quad \sin (m x) \cos (n x) d x$,

$$
\cos (m x) \cos (n x) d x
$$

i. $\quad \sin (m x) \sin (n x) d x$ (m and n are different). we use the identity;

$$
\sin (m x) \sin (n x)=\frac{1}{2}[\cos (m x-n x)-\cos (m x+n x)]
$$

Z
Example (11): Evaluate the integral $\sin (3 x) \sin (2 x) d x$ Solution:

$$
\begin{aligned}
\int \sin (3 x) \sin (2 x) d x & =\int \frac{1}{2}[\cos (3 x-2 x)-\cos (3 x+2 x) x] d x \\
& =\frac{1}{2} \int \cos (x) d x-\frac{1}{2} \int \cos (5 x) d x \\
& =\frac{1}{2} \sin (x)-\frac{1}{10} \sin (5 x)+C
\end{aligned}
$$

Z ii. $\sin (m x) \cos (n x) d x$ (m and n are different). we use the identity;

$$
\sin (m x) \cos (n x)=\frac{1}{2}[\sin (m x+n x)+\sin (m x-n x)]
$$

Example (12): Evaluate the integral

Solution:

$$
\begin{aligned}
\int \cos (5 x) \sin (3 x) d x & =\int \frac{1}{2}[\sin (8 x)+\sin (-2 x)] d x \\
& =\frac{1}{2} \int \sin (8 x) d x-\frac{1}{2} \int \sin (2 x) d x=\frac{-1}{16} \cos (8 x)+\frac{1}{4} \cos (2 x)+C
\end{aligned}
$$

Z iii. $\quad \cos (m x) \cos (n x) d x$ (m and n are different). we use the identity;

$$
\begin{aligned}
\cos (m x) \cos (n x) & =\frac{1}{2}[\cos (m x+n x)+\cos (m x-n x)] \\
\mathrm{Z} &
\end{aligned}
$$

Example (13): Evaluate the integral $\cos (4 x) \cos (2 x) d x$ Solution:

$$
\begin{aligned}
& \int \cos (4 x) \cos (2 x) d x=\int \frac{1}{2}[\cos (6 x)+\cos (2 x)] d x \\
&= \frac{1}{2} \int \cos (6 x) d x+\frac{1}{2} \int \cos (2 x) d x=\frac{1}{12} \sin (6 x)+\frac{1}{4} \sin (2 x)+C \\
& \text { Z Example }
\end{aligned}
$$

(14): Evaluate the integral $\sec ^{4}(2 x) d x$ Solution:

$$
\begin{align*}
\int \begin{aligned}
& \sec ^{4}(2 x) d x=\int \sec ^{2}(2 x) \sec ^{2}(2 x) d x=\int\left(\tan ^{2}(2 x)+1\right) \sec ^{2}(2 x) d x \\
&=\int \tan ^{2}(2 x) \sec ^{2}(2 x)+\sec ^{2}(2 x) d x \\
&=\int \tan ^{2}(2 x) \sec ^{2}(2 x) d x+\int \sec ^{2}(2 x) d x \\
&=\frac{1}{6} \tan ^{3}(2 x)+\frac{1}{2} \tan (2 x)+C \\
& \text { Example (15): Evaluate the integral } \quad \tan ^{4}(x) d x
\end{aligned} \quad \text { (H.W) }
\end{align*}
$$

Z
Example (16): Evaluate the integral

$$
\tan ^{2}(x) \sec ^{4}(x) d x
$$

Solution:

$$
\begin{aligned}
& \int \tan ^{2}(x) \sec ^{4}(x) d x=\int \tan ^{2}(x) \sec ^{2}(x) \sec ^{2}(x) d x \\
&=\int \tan ^{2}(x)\left(\tan ^{2}(x)+1\right) \sec ^{2}(x) d x \\
&=\int\left(\tan ^{4}(x) \sec ^{2}(x)+\tan ^{2}(x) \sec ^{2}(x)\right) d x \\
&=\int \tan ^{4}(x) \sec ^{2}(x) d x+\int \tan ^{2}(x) \sec ^{2}(x) d x \\
&=\frac{\tan ^{5}(x)}{5}+\frac{\tan ^{3}(x)}{3}+C \\
& \mathrm{Z}
\end{aligned}
$$

Example (17): Evaluate the integral $\tan ^{3}(x) \sec ^{3}(x) d x$ Solution:

$$
\begin{aligned}
\int \tan ^{3}(x) \sec ^{3}(x) d x & =\int \tan ^{2}(x) \sec ^{2}(x) \sec (x) \tan (x) d x \\
& =\int\left(\sec ^{2}(x)-1\right) \sec ^{2}(x) \sec (x) \tan (x) d x \\
& =\int \sec ^{4}(x) \sec (x) \tan (x) d x-\int \sec ^{2}(x) \sec (x) \tan (x) d x \\
& =\frac{\sec ^{5}(x)}{5}-\frac{\sec ^{3}(x)}{3}+C
\end{aligned}
$$

Exercises (4.3): Evaluate the following integrals.
$\int_{0}^{2 \pi} \sin ^{4}(x) \cos ^{2}(x) d x$
2) $\int \frac{\cos ^{3}(x)}{1-\sin (x)} d x$
3) $\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2}(\theta)}{\cos ^{2}(\theta)} d \theta$
4) $\int \frac{\cot ^{3}(x)}{\csc (x)} d x$
$\int \cos (2 y) \sin \left(\frac{1}{2} y\right) d y$
6) $\int_{0}^{\frac{\pi}{2}} \sqrt{1+\cos (x)} d x$
7) $\int \tan ^{3}(2 \theta) \sec ^{3}(2 \theta) d \theta$
1)
5)
1.5 Integration of The Inverse Trigonometric Functions:

$$
\begin{aligned}
& \int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\left\{\begin{array}{l}
\sin ^{-1}\left(\frac{u}{a}\right)+C \\
-\cos ^{-1}\left(\frac{u}{a}\right)+C
\end{array}\right. \\
& \int \frac{d u}{a^{2}+u^{2}}=\left\{\begin{array}{l}
\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C \\
-\frac{1}{a} \cot ^{-1}\left(\frac{u}{a}\right)+C
\end{array}\right.
\end{aligned}
$$

1)
2)
3) $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\left\{\begin{array}{l}\frac{1}{a} \sec ^{-1}\left(\frac{u}{a}\right)+C \\ -\frac{1}{a} \csc ^{-1}\left(\frac{u}{a}\right)+C\end{array}\right.$

Example (1): Evaluate the integral $\int \frac{d x}{1+3 x^{2}}$
Solution:
$a^{2}=1 \Rightarrow a=1$ and $u^{2}=3 x^{2} \Rightarrow u=\quad \sqrt{-}_{-} \quad 3 x \Rightarrow d u=\quad \begin{aligned} & V_{-} \\ & 3 d x\end{aligned}$
$\Rightarrow \int \frac{d x}{1+3 x^{2}}=\frac{1}{\sqrt{3}} \int \frac{\sqrt{3} d x}{1+(\sqrt{3} x)^{2}}=\frac{1}{\sqrt{3}} \tan ^{-1}(\sqrt{3} x)+C$
Example (2): Evaluate the integral $\int \frac{e^{x} d x}{\sqrt{1-e^{2 x}}}$
Solution:
$a^{2}=1 \Rightarrow a=1$ and $u^{2}=e^{2 x} \Rightarrow u=e^{x} \Rightarrow d u=e^{x} d x$
$\Rightarrow \int \frac{e^{x} d x}{\sqrt{1-\left(e^{x}\right)^{2}}}=\sin ^{-1}\left(e^{x}\right)+C$
Example (3): Evaluate the integral $\int \frac{d x}{x \sqrt{4 x^{2}-9}}$
Solution:
$a^{2}=9 \Rightarrow a=3$ and $u^{2}=4 x^{2} \Rightarrow u=2 x \Rightarrow d u=2 d x$
$\Rightarrow \int \frac{d x}{x \sqrt{4 x^{2}-9}} \times \frac{2}{2}=\int \frac{2 d x}{2 x \sqrt{(2 x)^{2}-(3)^{2}}}=\frac{1}{3} \sec ^{-1}\left(\frac{2 x}{3}\right)+C$
Example (4): Evaluate the integral $\int \frac{\sec ^{2}(x) d x}{\sqrt{1-\tan ^{2}(x)}}$
Solution:

$$
\begin{aligned}
& \int \frac{\sec ^{2}(x) d x}{\sqrt{1-\tan ^{2}(x)}}=\int \frac{\sec ^{2}(x) d x}{\sqrt{1-(\tan (x))^{2}}} \\
& a^{2}=1 \Rightarrow a=1 \text { and } u^{2}=(\tan (x))^{2} \Rightarrow u=\tan (x) \Rightarrow d u=\sec ^{2}(x) d x \\
& \Rightarrow \int \frac{\sec ^{2}(x) d x}{\sqrt{1-(\tan (x))^{2}}}=\sin ^{-1}(\tan (x))+C
\end{aligned}
$$

Exercises (5.1): Evaluate the following integrals.

$$
\begin{array}{lll}
\int \frac{d x}{\sqrt{1-4 x^{2}}} & \text { 1)2)3) } & \int \frac{d x}{1+16 x^{2}}
\end{array} \int \frac{d x}{x \sqrt{x^{2}-1}}
$$

7) $\int_{1}^{3} \frac{d x}{\sqrt{x}(x+1)}$
8) $\int \frac{d x}{e^{x}+e^{-x}}$
9) $\int \frac{\sin ^{-1}(x) d x}{\sqrt{1-x^{2}}}$
1.6 Integration of The Hyperbolic Functions:

Z

1) $\sinh (u) d u=\cosh (u)+C$

Z
2) $\cosh (u) d u=\sinh (u)+C$

Z
3) $\tanh (u) d u=\ln |\cosh (u)|+C$

Z
4) $\quad \operatorname{coth}(u) d u=\ln |\sinh (u)|+C$

Z
5) $\operatorname{sech}^{2}(u) d u=\tanh (u)+C$

Z
6) $\operatorname{csch}^{2}(u) d u=-\operatorname{coth}(u)+C$

Z
7) $\operatorname{sech}(u) \tanh (u) d u=-\operatorname{sech}(u)+C$

Z
8) $\operatorname{csch}(u) \operatorname{coth}(u) d u=-\operatorname{csch}(u)+C$

Example (1): Evaluate the following integrals.

$$
\begin{aligned}
& \int \sinh ^{5}(x) \cosh (x) d x=\frac{\sinh ^{6}(x)}{6}+C \\
& \int e^{2 x} \operatorname{sech}^{2}\left(e^{2 x}\right) d x=\frac{1}{2} \tanh \left(e^{2 x}\right)+C \\
& \int \sqrt{\tanh (x)} \operatorname{sech}^{2}(x) d x=\frac{\tanh ^{\frac{3}{2}}(x)}{\frac{3}{2}}+C=\frac{2}{3} \sqrt{\tanh ^{3}(x)}+C \\
& \int \tanh (x) \operatorname{sech}^{3}(x) d x=-\int-\tanh (x) \operatorname{sech}(x) \operatorname{sech}^{2}(x) d x=\frac{-\operatorname{sech}^{3}(x)}{3}+C \\
& \int \operatorname{sech}^{2}(2 x-1) d x \times \frac{2}{2}=\frac{1}{2} \tanh (2 x-1)+C
\end{aligned}
$$

2)
3)
4)
5)
6)

$$
\begin{aligned}
\int e^{x} \sinh (x) d x & =\int e^{x}\left(\frac{e^{x}-e^{-x}}{2}\right) d x=\int \frac{e^{2 x}-1}{2} d x=\frac{1}{2} \int\left(e^{2 x}-1\right) d x \\
& =\frac{1}{2} \times \frac{1}{2} e^{2 x}-\frac{1}{2} x+C=\frac{1}{4} e^{2 x}-\frac{1}{2} x+C
\end{aligned}
$$

Exercises (6.1): Evaluate the following integrals.
Z

1) $\left.\left.\operatorname{sech}(x) d x \quad 2) \quad \operatorname{coth}^{2}(3 x) d x 3\right) 4\right)$ ZZ $\int \cosh \left(\frac{x}{9}\right) d x$ $e^{x} \cosh (x) d x$

1.7 Integration of The Inverse Hyperbolic Functions:

$$
\begin{aligned}
& \int \frac{d u}{\sqrt{u^{2}+a^{2}}}=\sinh ^{-1}\left(\frac{u}{a}\right)+C \\
& \int \frac{d u}{\sqrt{u^{2}-a^{2}}}=\cosh ^{-1}\left(\frac{u}{a}\right)+C
\end{aligned}
$$

1)
2)

$$
\begin{aligned}
& \int \frac{d u}{a^{2}-u^{2}}=\left\{\begin{array}{llr}
\frac{1}{a} \tanh ^{-1}\left(\frac{u}{a}\right)+C & \text { if } & |u|<a \\
(& \frac{1}{a} \operatorname{coth}^{-1}\left({ }^{u}\right)+C_{-a} & \text { if }
\end{array}\right. \\
& a \\
& \int \frac{|u|>}{u \sqrt{a^{2}-u^{2}}}=\frac{-1}{a} \operatorname{sech}^{-1}\left(\frac{u}{a}\right)+C \\
& \int \frac{d u}{u \sqrt{a^{2}+u^{2}}}=\frac{-1}{a} \operatorname{csch}^{-1}\left(\frac{u}{a}\right)+C
\end{aligned}
$$

4)
5)

Example (1): Evaluate the integral $\int \frac{d x}{\sqrt{4 x^{2}-9}}$
Solution:
$a^{2}=9 \Rightarrow a=3$ and $u^{2}=4 x^{2} \Rightarrow u=2 x \Rightarrow d u=2 d x$
$\Rightarrow \int \frac{d x}{\sqrt{4 x^{2}-9}}=\frac{1}{2} \int \frac{2 d x}{\sqrt{(2 x)^{2}-(3)^{2}}}=\frac{1}{2} \cosh ^{-1}\left(\frac{2 x}{3}\right)+C$
Example (2): Evaluate the integral $\int \frac{d x}{\sqrt{1+9 x^{2}}}$
Solution:
$a^{2}=1 \Rightarrow a=1$ and $u^{2}=9 x^{2} \Rightarrow u=3 x \Rightarrow d u=3 d x$
$\Rightarrow \int \frac{d x}{\sqrt{1+9 x^{2}}}=\frac{1}{3} \int \frac{3 d x}{\sqrt{1+(3 x)^{2}}}=\frac{1}{3} \sinh ^{-1}(3 x)+C$
Example (3): Evaluate the integral $\int \frac{\tan (x)}{\sqrt{\sin ^{4}(x)+\cos ^{4}(x)}} d x$ Solution:
$\int \frac{\tan (x)}{\sqrt{\sin ^{4}(x)+\cos ^{4}(x)}} d x=\int \frac{\tan (x)}{\sqrt{\cos ^{4}(x)\left(\tan ^{4}(x)+1\right)}} d x=\int \frac{\tan (x)}{\cos ^{2}(x) \sqrt{\tan ^{4}(x)+1}} d x$

$$
=\int \frac{\tan (x) \sec ^{2}(x)}{\sqrt{\tan ^{4}(x)+1}} d x=\int \frac{\tan (x) \sec ^{2}(x)}{\sqrt{\left(\tan ^{2}(x)\right)^{2}+1}} d x
$$

$a^{2}=1 \Rightarrow a=1$ and $u^{2}=\left(\tan ^{2}(x)\right)^{2} \Rightarrow u=\tan ^{2}(x) \Rightarrow d u=2 \tan (x) \sec ^{2}(x) d x$
$\Rightarrow \int \frac{\tan (x) \sec ^{2}(x)}{\sqrt{\left(\tan ^{2}(x)\right)^{2}+1}} d x=\frac{1}{2} \sinh ^{-1}\left(\tan ^{2}(x)\right)+C$
Example (4): Evaluate the integral $\int \frac{d x}{x \sqrt{1+4 x^{2}}}$
Solution:
$a^{2}=1 \Rightarrow a=1$ and $u^{2}=4 x^{2} \Rightarrow u=2 x \Rightarrow d u=2 d x$
$\Rightarrow \int \frac{d x}{x \sqrt{1+4 x^{2}}}=\int \frac{2 d x}{2 x \sqrt{1+(2 x)^{2}}}=-\operatorname{csch}^{-1}(2 x)+C$

Exercises (7.1): Evaluate the following integrals.

1) $\int \frac{d t}{\sqrt{t^{2}+1}}$
2) $\int \frac{d x}{\sqrt{9 x^{2}-25}}$ 3) $\int \frac{d x}{9 x^{2}+25}$

1.8 The Methods of Integration:

1.8.1 Integration by Substitution:

Z

Example (1): Evaluate the integral

$$
\begin{array}{cc}
& \overline{\mathrm{p}^{2} d x} \\
2 x & 1+x
\end{array}
$$

Solution:
let $u=1+x^{2} \Rightarrow d u=2 x d x$
$\Rightarrow \int 2 x \sqrt{1+x^{2}} d x=\int u^{\frac{1}{2}} d u=\frac{u^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{2}{3}\left(1+x^{2}\right)^{\frac{3}{2}}+C$
Example (2): Evaluate the integral $\int \frac{2^{x} d x}{1+4^{x}}$
Solution:
let $u=2^{x} \Rightarrow d u=2^{x} \ln (2) d x \Rightarrow 2^{x} d x=\frac{d u}{\ln (2)}$
$\Rightarrow \int \frac{2^{x} d x}{1+4^{x}}=\int \frac{2^{x} d x}{1+\left(2^{2}\right)^{x}}=\int \frac{2^{x} d x}{1+2^{2 x}}=\int \frac{2^{x} d x}{1+\left(2^{x}\right)^{2}}=\int \frac{\frac{d u}{\ln (2)}}{1+u^{2}}$

$$
=\frac{1}{\ln (2)} \int \frac{d u}{1+u^{2}}=\frac{1}{\ln (2)} \tan ^{-1}(u)+C=\frac{1}{\ln (2)} \tan ^{-1}\left(2^{x}\right)+C
$$

Example (3): Evaluate the integral
$\int_{0}^{\frac{\pi}{4}} \tan (x) \sec ^{2}(x) d x$ Solution: let $u=\tan (x) \Rightarrow d u=$
$\sec ^{2}(x) d x$
\Rightarrow If $x=\frac{\pi}{4} \Rightarrow u=\tan \left(\frac{\pi}{4}\right)=1$
\Rightarrow If $x=0 \Rightarrow u=\tan (0)=0$
$\Rightarrow \int_{0}^{\frac{\pi}{4}} \tan (x) \sec ^{2}(x) d x=\int_{0}^{1} u d u=\left[\frac{u^{2}}{2}\right]_{0}^{1}=\frac{1}{2}-\frac{0}{2}=\frac{1}{2}$

Exercises (8.1.1): Evaluate the following integrals.

1) $\int \frac{2 z}{\sqrt[3]{z^{2}+1}} d z$
2) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos (x)}{(2+\sin (x))^{2}} d x$
3) $\int \frac{d x}{\sqrt{1+\sqrt{x}}}$
4) $\int \frac{\cos ^{3}(x)+\cos ^{5}(x)}{\sin ^{2}(x)+\sin ^{4}(x)}$

1.8.2 Integration by Completing the Square:

Example (4): Evaluate the integral $\int \frac{d x}{\sqrt{2 x-x^{2}}}$
Solution:
$\int \frac{d x}{\sqrt{2 x-x^{2}}}=\int \frac{d x}{\sqrt{-\left(x^{2}-2 x\right)}}=\int \frac{d x}{\sqrt{-\left(x^{2}-2 x+1-1\right)}}$

$$
=\int \frac{d x}{\sqrt{-\left(x^{2}-2 x+1\right)+1}}=\int \frac{d x}{\sqrt{1-(x-1)^{2}}}=\sin ^{-1}(x-1)+C
$$

Example (5): Evaluate the integral $\int \frac{d x}{4 x^{2}+4 x+2}$ Solution:

$$
\begin{aligned}
\int \frac{d x}{4 x^{2}+4 x+2} & =\int \frac{d x}{4\left(x^{2}+x+\frac{1}{2}\right)}=\int \frac{d x}{4\left(x^{2}+x+\frac{1}{4}+\frac{1}{4}\right)} \\
& =\int \frac{d x}{4\left(x^{2}+x+\frac{1}{4}\right)+1}=\int \frac{d x}{4\left(x+\frac{1}{2}\right)^{2}+1} \\
& =\int \frac{d x}{(2 x+1)^{2}+1}=\frac{1}{2} \tan ^{-1}(2 x+1)+C
\end{aligned}
$$

Example (6): Evaluate the integral $\int \frac{d x}{x^{2}+2 x+2}$ Solution:

$$
\begin{aligned}
\int \frac{d x}{x^{2}+2 x+2} & =\int \frac{d x}{x^{2}+2 x+1+1}=\int \frac{d x}{\left(x^{2}+2 x+1\right)+1} \\
& =\int \frac{d x}{(x+1)^{2}+1}=\tan ^{-1}(x+1)+C
\end{aligned}
$$

Exercises (8.2.1): Evaluate the following integrals.

1) $\int \frac{d x}{x^{2}+10 x+30}$
2) $\int \frac{d x}{\sqrt{20+8 x-x^{2}}}$
3) $\int \frac{d x}{\sqrt{-x^{2}+4 x-3}}$
1.8.3 Reducing an Improper Fraction:

Example (7): Evaluate the integral. $\int \frac{x+1}{x+2} d x$
Solution:

$$
\begin{aligned}
\int \frac{x+1}{x+2} d x= & \int\left(1-\frac{1}{x+2}\right) d x \\
& =x-\ln |x+2|+C \\
& \\
& \text { Evaluate the integral. } \int \frac{x+2)^{3}}{x^{2}-4} d x
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\left(\begin{array}{r}
-2) \\
x^{2}-4
\end{array}=\underline{(-2)(-2)}=\begin{array}{lllll}
(-2) & x & 3 & x x x x \times x & 2
\end{array}\right. \\
(x+2)
\end{array} \\
\end{array} \\
& x-6 \\
& =\frac{x^{2}-4 x+4}{x+2}=(x-6)+\frac{16}{x+2} \quad \underline{x+2} @_{X @ 2}-4 x+4 \quad \underline{\Phi}^{\varrho_{X \varrho 2}} \underline{\Phi 2 x} \\
& \therefore \int \frac{(x-2)^{3}}{x^{2}-4} d x=\int\left((x-6)+\frac{16}{x+2}\right) d x \\
& 16-2 x+4 \\
& \pm 6 x \pm 12 \\
& =\frac{x^{2}}{2}-6 x+16 \ln |x+2|+C \int \frac{3 x^{3}-4 x^{2}+3 x}{x^{2}+1} d x
\end{aligned}
$$

Example (9): Evaluate the integral

$$
\begin{aligned}
& 3 x-4
\end{aligned}
$$

1.8.4 Integration by Separating a Fraction

Example (10): Evaluate the integral $\int \frac{3 x+2}{\sqrt{1-x^{2}}} d x_{\text {Solution: }}$
$\int \frac{3 x+2}{\sqrt{1-x^{2}}} d x=3 \int \frac{x}{\sqrt{1-x^{2}}} d x+2 \int \frac{d x}{\sqrt{1-x^{2}}}$
The first integral:
let ${ }^{u}=1-x^{2} \Rightarrow d u=-2 x d x \Rightarrow \frac{-1}{2} d u=x d x$

$$
\begin{aligned}
\Rightarrow 3 \int \frac{x}{\sqrt{1-x^{2}}} d x & =3 \int \frac{\left(\frac{-1}{2}\right)}{\sqrt{u}} d u=\frac{-3}{2} \int \frac{d u}{\sqrt{u}}=\frac{-3}{2} \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C_{1} \\
& =-3 \sqrt{u}+C_{1}=-3 \sqrt{1-x^{2}}+C_{1}
\end{aligned}
$$

The second integral:
$\Rightarrow 2 \int \frac{d x}{\sqrt{1-x^{2}}}=2 \sin ^{-1}(x)+C_{2}$
$\therefore \int \frac{3 x+2}{\sqrt{1-x^{2}}} d x=-3 \sqrt{1-x^{2}}+2 \sin ^{-1}(x)+C$
Example (11): Evaluate the integral $\int_{0}^{\frac{\pi}{4}} \frac{1+\sin (x)}{\cos ^{2}(x)} d x$
Solution:
$\int_{0}^{\frac{\pi}{4}} \frac{1+\sin (x)}{\cos ^{2}(x)} d x=\int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos ^{2}(x)}+\frac{\sin (x)}{\cos ^{2}(x)}\right) d x=\int_{0}^{\frac{\pi}{4}} \sec ^{2}(x) d x+\int_{0}^{\frac{\pi}{4}} \sin (x) \cos ^{-2}(x) d x$

$$
=[\tan (x)]_{0}^{\frac{\pi}{4}}+\left[\cos ^{-1}(x)\right]_{0}^{\frac{\pi}{4}}=[\tan (x)]_{0}^{\frac{\pi}{4}}+[\sec (x)]_{0}^{\frac{\pi}{4}}=\sqrt{2}
$$

Example (12): Evaluate the integral $\int_{0}^{\frac{\sqrt{3}}{2}} \frac{1-x}{\sqrt{1-x^{2}}} d x$
1.8.5 Integration by Parts

The formula for integration by parts comes from the product rule:
$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\Rightarrow u d v=d(u v)-v d u$
$\Rightarrow \int u d v=u v-\int v d u$
يجب فصل التكامل المعطى الىى جزئين احدهما u والاخر dv بحيث نختار u وتكون قابلة للتفاضل و

$$
\text { قابلة للتكامل ويجب ان لايكون التكامل } \int u d v \text { اكثر تعقبداً من التكامل }
$$

The equivalent formula for definite integrals is:
$\int_{a}^{b} u d v=[u v]_{a}^{b}-\int_{a}^{b} v d u$
(13): Evaluate the integral

$$
\begin{array}{rr}
\mathrm{Z} & \text { Example } \\
x \cos (x) d x &
\end{array}
$$

Solution:

let $u=x \Rightarrow d u=d x$
$d v=\cos (x) d x \Rightarrow v=\sin (x)$
Z
$\therefore x \cos (x) d x=x \sin (x)-$
(14): Evaluate the integral $\ln (x) d x$

Solution:
let $u=\ln (x) \Rightarrow d u=\frac{1}{x} d x$
$\Rightarrow d v=d x \Rightarrow v=x$
$\therefore \int \ln (x) d x=x \ln (x)-\int x \frac{1}{x} d x=x \ln (x)-x+C$

Z Example

(15): Evaluate the integral $\quad x^{2} e^{x} d x$

Solution:

let $u=x^{2} \Rightarrow d u=2 x d x$
$\Rightarrow d v=e^{x} d x \Rightarrow v=e^{x}$
Z
$\therefore x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x} d x$ let $u=x \Rightarrow$

$$
d u=d x
$$

$\Rightarrow d v=e^{x} d x \Rightarrow v=e^{x}$
$\therefore \int x^{2} e^{x} d x=x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right]=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C$

Z Example
(16): Evaluate the integral $e^{x} \cos (x) d x$

Solution:

let $u=e^{x} \Rightarrow d u=e^{x} d x$
$\Rightarrow d v=\cos (x) d x \Rightarrow v=\sin (x)$
Z
$\therefore e^{x} \cos (x) d x=e^{x} \sin (x)-\quad e^{x} \sin (x) d x$ let $u=$
$e^{x} \Rightarrow d u=e^{x} d x$
$\Rightarrow d v=\sin (x) d x \Rightarrow v=-\cos (x)$
$\therefore \int e^{x} \cos (x) d x=e^{x} \sin (x)-\left[-e^{x} \cos (x)+\int e^{x} \cos (x) d x\right]$ $=e^{x} \sin (x)+e^{x} \cos (x)-\int e^{x} \cos (x) d x$
$\Rightarrow 2 \int e^{x} \cos (x) d x=e^{x} \sin (x)+e^{x} \cos (x)$
$\Rightarrow \int e^{x} \cos (x) d x=\frac{1}{2} e^{x} \sin (x)+\frac{1}{2} e^{x} \cos (x)+C$

> Z
> $\sin ^{-1}(x) d x$

Solution:

$$
\left.\begin{array}{l}
\quad u=\sin ^{-1}(x) \Rightarrow d u=\frac{d x}{\sqrt{1-x^{2}}} \\
\Rightarrow d v=d x \Rightarrow v \\
\Rightarrow \int \sin ^{-1}(x) d x
\end{array}\right)=x \sin ^{-1}(x)-\int \frac{x}{\sqrt{1-x^{2}}} d x .
$$

Exercises (8.5.1): Evaluate each of the following integrals.
Z
Z

1) $x \sin (x) d x$
2) $\sin (\ln (x)) d x$
Z
3) $\tan ^{-1}(x) d x$

Z
4)
4) $\quad x^{3} e^{x} d x$
5) $x \ln (x) d x$
6) $\ln \left(x^{2}+2\right) d x$
7) $x \sec ^{-1}(x) d x$
Z

Z
Z

1.8.6 Tabular Integration:

Z

We have seen that integrals of the form $f(x) g(x) d x$, in which f can be differentiated repeatedly to become zero, and g can be integrated repeatedly with out difficulty, are natural candidates for integration by parts.

Z
Example (18): Evaluate the integral $x^{2} e^{x} d x$ by tabular integration.

Solution:
$f(x)=x^{2} \quad, \quad g(x)=e^{x}$
$\underline{f(x) \text { and its derivative } \quad \underline{g(x)} \text { and its integral }}$

$0 \longrightarrow e^{x}$
$\Rightarrow \quad x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C$

Z
Example (19): Evaluate the integral $\quad x^{3} \sin (x) d x$ by tabular integration.
Solution:
$f(x)=x^{3} \quad, \quad g(x)=\sin (x)$

| $f(x)$ and its derivative | $\underline{g(x)}$ and its integral |
| :---: | :---: | :---: |
| $x^{3} \longrightarrow-\cos (x)$ | |
| $3 x^{2} \longrightarrow$ | $\sin (x)$ |
| $6 x \longrightarrow$ | $\cos (x)$ |
| $6 \longrightarrow$ | $\sin (x)$ |

$$
\Rightarrow \quad x^{3} \sin (x) d x=-x^{3} \cos (x)+3 x^{2} \sin (x)+6 x \cos (x)-6 \sin (x)+C
$$

1.8.7 Trigonometric Substitutions:
i. The function of the form

$$
\mathrm{p}^{2}-b^{2} u^{2}
$$

we use the following
$u=\frac{a}{b} \sin (z) \Rightarrow d u=\frac{a}{b} \cos (z) d z$
$\Rightarrow \sin (z)=\frac{b u}{a} \Rightarrow z=\sin ^{-1}\left(\frac{b u}{a}\right)$ substitute

Example (20): Evaluate the integral $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x_{\text {Solution: }}$
$a=2, b=1$
let
$\because \cos (z)=\frac{\sqrt{4-x^{2}}}{2} \Rightarrow \sqrt{4-x^{2}}=2 \cos (z)$
$x=2 \sin (z) \Rightarrow d x=2 \cos (z) d z \Rightarrow \sin (z)=\frac{x}{2}$

$$
\begin{aligned}
\Rightarrow \int \frac{x^{2}}{\sqrt{4-x^{2}}} d x & =\int \frac{4 \sin ^{2}(z)}{2 \cos (z)} 2 \cos (z) d z=\int 4 \sin ^{2}(z) d z=4 \int \sin ^{2}(z) d z \\
& =4 \int\left(\frac{1-\cos (2 z)}{2}\right) d z=2\left(\int d z-\int \cos (2 z) d z\right) \\
& =2 z-\sin (2 z)+C=2 z-2 \sin (z) \cos (z)+C
\end{aligned}
$$

$\because \sin (z)=\frac{x}{2} \Rightarrow z=\sin ^{-1}\left(\frac{x}{2}\right)$
$\Rightarrow \int \frac{x^{2}}{\sqrt{4-x^{2}}} d x=2 \sin ^{-1}\left(\frac{x}{2}\right)-\mathrm{Q}\left(\frac{x}{\mathrm{z}}\right)\left(\frac{\sqrt{4-x^{2}}}{2}\right)+C$

$$
=2 \sin ^{-1}\left(\frac{x}{2}\right)-\left(\frac{x \sqrt{4-x^{2}}}{2}\right)+C
$$

Example (21): Evaluate the integral $\int \frac{\sqrt{ } 9-4 x^{2}}{x} d x$

Solution:

$a=3, b=2$
$\because \cos (z)=\frac{\sqrt{9-4 x^{2}}}{3} \Rightarrow \sqrt{9-4 x^{2}}=3 \cos (z)$
let $x=\frac{3}{2} \sin (z) \Rightarrow d x=\frac{3}{2} \cos (z) d z \Rightarrow \sin (z)=\frac{2 x}{3}$

$$
\begin{aligned}
\Rightarrow \int \frac{\sqrt{9-4 x^{2}}}{x} d x & =\int \frac{3 \cos (z)}{\frac{3}{2} \sin (z)} \times \frac{3}{2} \cos (z) d z=\int \frac{3 \cos ^{2}(z)}{\sin (z)} d z=3 \int \frac{1-\sin ^{2}(z)}{\sin (z)} d z \\
& =3\left(\int \frac{d z}{\sin (z)}-\int \frac{\sin ^{2}(z)}{} d z\right)=3\left(\int \csc (z) d z-\int \sin (z) d z\right) \\
& =3 \ln |\csc (z)-\cot (z)|+3 \cos (z)+C \\
& =3 \ln \left|\frac{1}{\sin (z)}-\frac{\cos (z)}{\sin (z)}\right|+3 \cos (z)+C \\
& =3 \ln \left|\frac{1}{2 x / 3}-\frac{\sqrt{9-4 x^{2}} / \mathrm{B}}{2 x / 3}\right|+3 \frac{\sqrt{9-4 x^{2}}}{3}+C \\
& =3 \ln \left|\frac{3}{2 x}-\frac{\sqrt{9-4 x^{2}}}{2 x}\right|+\sqrt{9-4 x^{2}}+C \\
\mathrm{p}^{2+b^{2} u^{2} \mathrm{ii} .} & \text { ? } \sin \left(\mathrm{Hz} \mathrm{Z}_{\mathrm{H}}\right)
\end{aligned}
$$

The function of the form a
$u=\frac{a}{b} \tan (z) \Rightarrow d u=\frac{a}{b} \sec ^{2}(z) d z$
$\Rightarrow \tan (z)=\frac{b u}{a} \Rightarrow z=\tan ^{-1}\left(\frac{b u}{a}\right)$ substitute

Example (22): Evaluate the integral $\int \frac{d x}{x \sqrt{9+4 x^{2}}}$ Solution:

$$
a=3, b=2
$$

$$
\text { let } x=\frac{3}{2} \tan (z) \Rightarrow d x=\frac{3}{2} \sec ^{2}(z) d z \Rightarrow \tan (z)=\frac{2 x}{3}
$$

$$
\begin{aligned}
& \because \cos (z)=\frac{3}{\sqrt{9+4 x^{2}}} \Rightarrow \sec (z)=\frac{\sqrt{9+4 x^{2}}}{3} \\
& \begin{aligned}
\Rightarrow \sqrt{9+4 x^{2}}=3 \sec (z)
\end{aligned} \\
& \begin{aligned}
\because \sin (z)=\frac{2 x}{\sqrt{9+4 x^{2}}}
\end{aligned} \\
& \begin{array}{r}
\Rightarrow \int \frac{d x}{x \sqrt{9+4 x^{2}}}
\end{array}=\int \frac{\left.\frac{3}{2} \sec ^{2}(z)\right)^{\sec (z)} d z}{\frac{3}{2} \tan (z) * 3 \sec (z)}=\frac{1}{3} \int \frac{\sec (z)}{\tan (z)} d z \\
& \\
& \left.=\frac{1}{3} \int \csc (z) d z=\frac{1}{3} \ln \right\rvert\, \csc (z)- \\
& \\
& \quad=\frac{1}{3} \ln \left|\frac{\sqrt{9+4 x^{2}}}{2 x}-\frac{3 / \sqrt{9+4 x^{2}}}{2 x / \sqrt{9+4 x^{2}}}\right|+C \\
& \quad=\frac{1}{3} \ln \left|\frac{\sqrt{9+4 x^{2}}}{2 x}-\frac{3}{2 x}\right|+C=\frac{1}{3} \ln \left|\frac{\sqrt{9+4 x^{2}}-3}{2 x}\right|+C
\end{aligned}
$$

Example (23): Evaluate the integral $\int \frac{d x}{\sqrt{x^{2}+4}}$ Solution:
$a=2, \quad b=1$

$$
x=2 \tan (z) \Rightarrow d x=2 \sec ^{2}(z) d z \Rightarrow \tan (z)=\frac{x}{2}
$$

$$
\because \cos (z)=\frac{2}{\sqrt{x^{2}+4}} \Rightarrow \sqrt{x^{2}+4}=2 \sec (z)
$$

$\because \sin (z)=\frac{x}{\sqrt{x^{2}+4}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}+4}}=\int \frac{2 \sec ^{2}(z)^{\sec (z)}}{2 \sec (z)}=\int \sec (z) d z=\ln |\sec (z)+\tan (z)|+C$

$$
\begin{aligned}
& =\ln \left|\frac{\sqrt{x^{2}+4}}{2}+\frac{x / \sqrt{x^{2}+4}}{2 / \sqrt{x^{2}+4}}\right|+C \\
& =\ln \left|\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}\right|+C=\ln \left|\frac{x+\sqrt{x^{2}+4}}{2}\right|+C
\end{aligned}
$$

let

$$
\mathrm{p}^{2} u^{2}-a^{2} \mathrm{iii} .
$$

The function of the form b

Example (24): Evaluate the integral $\int \frac{d x}{\sqrt{x^{2}-25}}$ Solution:

$$
a=5, b=1
$$

$$
5 \text { let } x=5 \sec (z) \Rightarrow d x=5 \sec (z) \tan (z) d z
$$

$$
\Rightarrow x^{2}-25=25 \sec ^{2}(z)-25=25\left(\sec ^{2}(z)-1\right)=25 \tan ^{2}(z)
$$

$$
=\ln |\sec (z)+\tan (z)|+C=\ln \frac{x}{5}+\frac{\overline{x^{2}-25 / \nexists}}{\sqrt{ }-\frac{5 / \neq}{}}+C
$$

$$
=\ln \frac{x}{5}+\frac{\sqrt{x^{2}-25}}{5}+C=\ln \frac{x+\sqrt{\frac{5}{x}}}{5}+C
$$

Exercises (8.7.1): Evaluate the following integrals.

1) $\int \frac{\sqrt{x^{2}-25}}{x} d x$

$$
\text { 2) } \int \frac{x^{2}}{\sqrt{5+x^{2}}} d x
$$

1.8.8 Integration by Partial Fractions:

The method of partial fractions is used to integrate rational functions $f(x)=\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomial functions and the degree of $P(x)$ is less than the degree of
$Q(x)$. If the degree of numerator greater than or equal the degree of the denominator, then must use long division firstly.

Remake (8.8.1):

1. First factor the denominator terms with simpler form.
2. If there is a factor has a fraction degree, then can not use this method to solve the given integral.

There are four cases to partial fractions:
Case 1: The denominator has only first degree factors, none of which are repeated.
Example (25): Evaluate the integral. $\int \frac{d x}{x^{2}-4}$
Solution:

$$
\begin{aligned}
& \frac{1}{x^{2}-4}=\frac{1}{(x-2)(x+2)}=\frac{A}{x-2}+\frac{B}{x+2} \quad \times(x-2)(x+2) \\
& \Rightarrow 1=A(x+2)+B(x-2) \Rightarrow 1=A x+2 A+B x-2 B \Rightarrow(A+B) x+(2 A-2 B)=1 \\
& A+B=0 \cdots(1) \quad \times 2 \Rightarrow \quad 2 A+2 B=0 \cdots(1) \\
& \underline{2 A-2 B=1} \cdots(2) \Rightarrow \quad \overline{2} 2 A \pm 2 B=\mp 1 \cdots(2) \\
& 4 B=-1 \Rightarrow \quad B=\frac{-1}{4} \Rightarrow A=\frac{1}{4} \\
& \mathrm{Z} d x \mathrm{Z} \underline{1}^{4} \quad-\quad \underline{1}^{4} d x=1 \mathrm{-}^{7 .} \underline{d x}-^{7 .} \underline{d x} \quad 1 \\
& \Rightarrow \quad \overline{x^{2}-4}=x-2 \quad x+2 \quad 4 \quad x-2 \quad 4 \quad x+2 \\
& \begin{array}{c}
1 \\
=-\ln |x-2|-{ }_{-} \ln |x+2|+C
\end{array} \begin{array}{cc}
1 \\
C
\end{array}
\end{aligned}
$$

Example (26): Evaluate the integral. $\int \frac{5 x-3}{x^{2}-2 x-3} d x$
Solution:

$$
\begin{aligned}
& \frac{5 x-3}{x^{2}-2 x-3}=\frac{5 x-3}{(x-3)(x+1)}=\frac{A}{x+1}+\frac{B}{x-3} \quad \times(x-3)(x+1) \\
& \Rightarrow 5 x-3=A(x-3)+B(x+1) \Rightarrow 5 x-3=A x-3 A+B x+B \\
& \Rightarrow 5 x-3=(A+B) x+(B-3 A) \\
& A+B=5 \cdots(1) \quad \times 3 \quad \mathrm{Z}_{5 x-3} \quad \mathrm{Z}_{d x} \quad \mathrm{Z} \\
& \underline{-3 A+B=-3} \cdots(2) \\
& \Rightarrow \quad d x=2 _+3 x^{2}-2 x \\
& 4 B=12 \Rightarrow B=3 \Rightarrow A=2 \\
& d x \\
& \Rightarrow \frac{5 x-3}{x^{2}-2 x-3}=\frac{2}{x+1}+\frac{3}{x-3} \quad x-3=2 \ln |x+1|+3 \ln |x-3|+C
\end{aligned}
$$

Exercises (8.8.1): Evaluate the following integrals.

1) $\int \frac{5 x-10}{x^{2}-3 x-4} d x$
2) $\int \frac{x+1}{x^{3}+x^{2}-6 x} d x$

Case 2: The denominator has only first degree factors, but some of these factors may be repeated factors.

Example (27): Evaluate the integral $\int \frac{3 x+5}{x^{3}-x^{2}-x+1} d x$ Solution:
$\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{3 x+5}{\left(x^{3}-x\right)-\left(x^{2}-1\right)}=\frac{3 x+5}{x\left(x^{2}-1\right)-\left(x^{2}-1\right)}=\frac{3 x+5}{\left(x^{2}-1\right)(x-1)}$
$=\frac{3 x+5}{(x-1)(x+1)(x-1)}=\frac{3 x+5}{(x+1)(x-1)^{2}}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{D}{(x-1)^{2}}$
$\Rightarrow 3 x+5=A(x-1)^{2}+B(x+1)(x-1)+D(x+1)$
$\Rightarrow 3 x+5=A\left(x^{2}-2 x+1\right)+B\left(x^{2}-1\right)+D(x+1)$
$\Rightarrow 3 x+5=A x^{2}-2 A x+A+B x^{2}-B+D x+D$
$\Rightarrow 3 x+5=(A+B) x^{2}+(D-2 A) x+(A-B+D)$
$A+B=0$
$-2 A+D=3 \cdots(2)$
$A+D-B=5 \cdots(3)$
from (1) and (3) $\Rightarrow 2 A+D=5 \cdots$ (4)

$$
-2 A+D=3 \cdots(2)
$$

$2 D=8 \Rightarrow D=4$
$-2 A+4=3 \Rightarrow A=\frac{1}{2} \Rightarrow B=\frac{-1}{2}$
$\Rightarrow \quad \mathrm{Z} \frac{3 x+5}{x^{3}-x^{2}-x+1} d x=\int \frac{\frac{1}{2}}{x+1} d x+\int \frac{4}{(x-1)^{2}} d x-\int \frac{\frac{1}{2}}{x-1} d x$

$$
=\frac{1}{2} \ln |x+1|-\frac{1}{2} \ln |x-1|-\frac{4}{x-1}+C
$$

Example (28): Evaluate the integral $\int \frac{x^{4}-x^{3}-x-1}{x^{3}-x^{2}} d x$
Solution: $\quad-B=1 \Rightarrow B=-1 \Rightarrow A=-2 \Rightarrow D=2$

$$
\begin{aligned}
& \frac{x^{4}-x^{3}-x-1}{x^{3}-x^{2}}=x-\frac{x+1}{x^{3}-x^{2}} \\
& \frac{x+1}{x^{3}-x^{2}}=\frac{x+1}{x^{2}(x-1)}=\begin{array}{l}
A \\
x
\end{array}+\frac{B}{x^{2}}+\frac{D}{x-1}-A x^{2}-\quad \Rightarrow \\
& \mathrm{Z} x 4-x 3-x-1 \\
& \text { ZZ-2 Z } \\
& \Rightarrow x+1=A x(x-1)+B(x-1)+D x^{2} D x^{2} \\
& \Rightarrow x+1=(A+D) x^{2}+(-A+B) x-B \\
& \Rightarrow A+D=0 \cdots(1) \\
& -A+B=1 \cdots(2)
\end{aligned}
$$

$\frac{\mp x^{4} \pm x^{3}}{-x-1}$

Case 3: The denominator has one or more quadratic factors, none of which are repeated.
Example (29): Evaluate the integral $\int \frac{x^{3}+x^{2}+x+2}{x^{4}+3 x^{2}+2} d x$
Solution:

$$
\begin{align*}
& \frac{x^{3}+x^{2}+x+2}{x^{4}+3 x^{2}+2}=\frac{x^{3}+x^{2}+x+2}{\left(x^{2}+2\right)\left(x^{2}+1\right)}=\frac{A x+B}{x^{2}+2}+\frac{D x+F}{x^{2}+1} \\
& \Rightarrow x^{3}+x^{2}+x+2=(A x+B)\left(x^{2}+1\right)+(D x+F)\left(x^{2}+2\right) \\
& \Rightarrow x^{3}+x^{2}+x+2=A x^{3}+A x+B x^{2}+B+D x^{3}+2 D x+F x^{2}+2 F \\
& \Rightarrow x^{3}+x^{2}+x+2=(A+D) x^{3}+(B+F) x^{2}+(A+2 D) x+(B+2 F) \\
& \Rightarrow A+D=1 \cdots(1) \\
& \Rightarrow B+F=1 \cdots(2) \\
& \Rightarrow A+2 D=1 \cdots(3) \tag{3}\\
& \Rightarrow B+2 F=2 \cdots(4)
\end{align*}
$$

From (1) and (3) $\Rightarrow D=0 \Rightarrow A=1$ From (2)

$$
\text { and }(4) \Rightarrow F=1 \Rightarrow B=0
$$

$\Rightarrow \int \frac{x^{3}+x^{2}+x+2}{x^{4}+3 x^{2}+2} d x=\int \frac{x}{x^{2}+2} d x+\int \frac{d x}{x^{2}+1}=\frac{1}{2} \ln \left|x^{2}+2\right|+\tan ^{-1}(x)+C$

Example (30): Evaluate the integral $\int \frac{3 x^{2}+x-2}{x^{3}-x^{2}+x-1} d x$
Case 4: The denominator has one or more quadratic factors, some of which are repeated quadratic factors.

Example (31): Evaluate the integral $\int \frac{d x}{x\left(x^{2}+1\right)^{2}}$
$\frac{1}{x\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\frac{B x+D}{\left(x^{2}+1\right)}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}$
$\Rightarrow 1=A\left(x^{2}+1\right)^{2}+(B x+D)\left(x^{3}+x\right)+(E x+F) x$
Solution:

$$
\begin{aligned}
& \Rightarrow 1=A\left(x^{4}+2 x^{2}+1\right)+(B x+D)\left(x^{3}+x\right)+(E x+F) x \\
& \Rightarrow 1=A x^{4}+2 A x^{2}+A+B x^{4}+B x^{2}+D x^{3}+D x+E x^{2}+F x \\
& \Rightarrow 1=(A+B) x^{4}+D x^{3}+(2 A+B+E) x^{2}+(D+F) x+A \\
& \Rightarrow A=1 \text { and } D=0 \\
& \Rightarrow A+B=0 \cdots(1) \Rightarrow B=-1 \\
& \Rightarrow 2 A+B+E=0 \cdots(2) \Rightarrow E=-1 \\
& \Rightarrow D+F=0 \cdots(3) \Rightarrow F=0 \\
& \Rightarrow \quad \frac{d x}{x\left(x^{2}+1\right)^{2}}=\int \frac{d x}{x}+\int \frac{-x d x}{\left(x^{2}+1\right)}+\int \frac{-x d x}{\left(x^{2}+1\right)^{2}} \\
& \quad=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+\frac{1}{2} \frac{1}{\left(x^{2}+1\right)}+C
\end{aligned}
$$

Exercises (8.8.2): Evaluate each of the following integrals.
$\int \frac{3 x^{4}+3 x^{3}-5 x^{2}+x-1}{x^{2}+x-2} d x$
2) $\int \frac{d x}{x^{4}-9}$
3) $\int \frac{-2 x+4}{\left(x^{2}+1\right)(x-1)^{2}} d x$
$\int \frac{2 x^{2}+3}{\left(x^{2}+1\right)^{2}} d x$
5) $\int \frac{3 x^{2}+x-2}{x^{3}-x^{2}+x-1} d x$
6) $\int \frac{x^{3}}{x^{2}+x-2} d x$
$\int \frac{d x}{(x-1)(x+1)\left(x^{2}+1\right)}$
8) $\int \frac{2 x^{3}-4 x^{2}-x-3}{x^{2}-2 x-3} d x$
1)
4)
7)
1.8.9 Special Substitute: Example (32): Evaluate
the integral $\int \frac{d x}{2+2 \sqrt{x}}$
Solution:

$$
\sqrt{ } \ldots \text { let } u=1+e^{x} \Rightarrow u^{2}=1+e^{x} \Rightarrow
$$

$$
e^{x}=u^{2}-1
$$

$1{ }^{\text {@ }}{ }^{1 @^{2}} \underline{\underline{u}}^{2}=$

Solution:

$$
\begin{align*}
& =u-\ln |1+u|+C=\sqrt{x}-\ln |1+\sqrt{x}|+C \\
& \mathrm{Z} \sqrt{1+e^{x}} d x \\
& \text { Example (33): Evaluate the integral } \\
& 1+e^{x} d x
\end{align*}
$$

Exercises (8.9.1): Evaluate the following integrals.

1) $\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} d x$
2) $\int \frac{d x}{1+\sqrt{x-2}}$
1.8.10 Substitute by ${ }^{z}=\tan \left(\frac{x}{2}\right)$:

Assume that ${ }^{z}=\tan \left(\frac{x}{2}\right)$
Since $\cos ^{2}\left(\frac{x}{2}\right)=\frac{1+\cos (x)}{2} \Rightarrow 2 \cos ^{2}\left(\frac{x}{2}\right)=1+\cos (x)$
$\Rightarrow \cos (x)=2 \cos ^{2}\left(\frac{x}{2}\right)-1=\frac{2}{\sec ^{2}\left(\frac{x}{2}\right)}-1=\frac{2}{1+\tan ^{2}\left(\frac{x}{2}\right)}-1=\frac{2}{1+z^{2}}-1$
$\Rightarrow \cos (x)=\frac{1-z^{2}}{1+z^{2}}$
Also

$$
-\sin (x)=2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)=\frac{2 \sin \left(\frac{x}{2}\right)}{\cos \binom{x}{2}} \times \cos ^{2}\left(\frac{x}{2}\right)
$$

Since
$=2 \tan \left(\frac{x}{2}\right) \times \frac{1}{\sec ^{2}\left(\frac{x}{2}\right)}=\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$
$\Rightarrow \sin (x)=\frac{2 z}{1+z^{2}}$
Also
$z=\tan \underline{x}_{2} \Rightarrow \underline{x}_{2}=\tan ^{-1}(z) \Rightarrow x=2 \tan ^{-1}(z)$
$\Rightarrow d x=\frac{2 d z}{1+z^{2}}$
Example (34): Evaluate the integral $\int \frac{d x}{1+\cos (x)}$ Solution:

$$
-\frac{2 d z}{1+z^{2}}=\int \frac{1}{\frac{2}{1+z^{2}}} \times \frac{2 d z}{1+z^{2}}
$$

$\int \frac{d x}{1+\cos (x)}=\int \frac{1}{1+\frac{1-z^{2}}{1+z^{2}}} \times \frac{2 d z}{1+z^{2}}=\int \begin{gathered}1 \\ \frac{1+z^{2}+1-z^{2}}{1+z^{2}}\end{gathered}$

$$
=\int \begin{gathered}
1+z^{2} \\
2
\end{gathered} \times \begin{gathered}
2 d z \\
1+z^{2}
\end{gathered}=\int d z=z+\quad C=\tan \binom{x}{2}+{ }_{-C}
$$

Example (35): Evaluate the integral $\int \frac{d x}{1-\sin (x)+\cos (x)}$

Solution:

$$
\begin{aligned}
& \text { CALCULUSI Dr. Mayada Gassab Mohammed } \\
& \int \frac{d x}{1-\sin (x)+\cos (x)}=\int \frac{\frac{2 d z}{1+z^{2}}}{1-\frac{2 z}{1+z^{2}}+\frac{1-z^{2}}{1+z^{2}}}=\int \frac{\frac{2 d z}{1+x^{2}}}{\frac{1+z^{2}-2 z+1-z^{2}}{1+x^{2}}}=\int \frac{2 d z}{2-2 z}=\int \frac{d z}{1-z} \\
& =-\ln |1-z|+C=-\ln \left|1-\tan \left(\frac{x}{2}\right)\right|+C
\end{aligned}
$$

Exercises (8.10.1): Evaluate the following integrals.

1) $\int \frac{d x}{2+\sin (x)} \quad$ 2) $\int \frac{d x}{\sin (x)+\tan (x)}$
1.9 Application of Definite Integrals

1.9.1 Area Between Curves

Definition (9.1.1): If $f(x)$ and $g(x)$ are continuous functions on the interval $[a, b]$ and $f(x) \geq$ $g(x)$ for all x in $[a, b]$ then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from \underline{a} to \underline{b} is the integral of $(f-g)$ from \underline{a} to \underline{b} i.e:-

$$
\text { A }=\text { Area }={ }_{a}^{7 .}{ }_{a}^{b}(f(x)-g(x)) d x
$$

Example (1): Find the area of the region bounded by y $=x+6$ and the curve $y=x^{2}$.

Solution:
$x^{2}=x+6 \Rightarrow x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0 \Rightarrow x=3$
$\therefore A=\int_{-2}^{3}\left((x+6)-x^{2}\right) d x=\left[\frac{x^{2}}{2}+6 x-\frac{x^{3}}{3}\right]_{-2}^{3}$
and $x=-2$

Example (2): Find the area of the region bounded by $y^{2}=x-1$ and the line $y=x-3$.

Solution:
$y^{2}+1=y+3 \Rightarrow y^{2}-y+1-3=0 \Rightarrow y^{2}-y-2=0$
$\Rightarrow(y-2)(y+1)=0$
$\Rightarrow y=2 \Rightarrow x=5$

$\Rightarrow y=-1 \Rightarrow x=2$

$$
\begin{aligned}
\therefore A & =\int_{-1}^{2}\left((y+3)-\left(y^{2}+1\right)\right) d y=\int_{-1}^{2}\left(-y^{2}+y+2\right) d y \\
& =\left[\frac{-y^{3}}{3}+\frac{y^{2}}{2}+2 y\right]_{-1}^{2}=\left(\frac{-8}{3}+2+4\right)-\left(\frac{1}{3}+\frac{1}{2}-2\right) \\
& =\left(\frac{-8}{3}+6\right)-\left(\frac{1}{3}-\frac{3}{2}\right)=\frac{27}{6}
\end{aligned}
$$

OR: unit area.

$$
A=\int_{1}^{2}(\sqrt{x-1}-(-\sqrt{x-1})) d x+\int_{2}^{5}(\sqrt{x-1}-(x-3)) d x=\frac{27}{6} \text { unit area. }
$$

Example (3): Find the area of the region bounded by $y=\sin (x)$ and $y=\cos (x)$ from $x=0$ to $x=\frac{\pi}{2}$.

Solution:

The point of intersection occur when

$$
\begin{aligned}
& \sin (x)=\cos (x) \Rightarrow \frac{\sin (x)}{\cos (x)}=1 \Rightarrow \tan (x)=1 \Rightarrow x=\frac{\pi}{4} \\
& \begin{aligned}
A_{1} & =\int_{0}^{\frac{\pi}{4}}(\cos (x)-\sin (x)) d x=[\sin (x)+\cos (x)]_{0}^{\frac{\pi}{4}} \\
& =\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(0+1)=\frac{2}{\sqrt{2}}-1=\frac{2-\sqrt{2}}{\sqrt{2}} \\
A_{2} & =\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin (x)-\cos (x)) d x=[-\cos (x)-\sin (x)]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
& =(0-1)-\left(\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)=-1+\frac{2}{\sqrt{2}}=\frac{2-\sqrt{2}}{\sqrt{2}}
\end{aligned}
\end{aligned}
$$

unit area.
$\Rightarrow A=A_{1}+A_{2}=\frac{4-2 \sqrt{2}}{\sqrt{2}}$ unit area.

Exercises (9.1.1):

1) Find the area between the curve $y=\cos (x)$ and $y=-\sin (x)$ from 0 to $\frac{\pi}{2}$.
2) Find the area of the region bounded above by $y=x^{2}+1$ and below by $y=x-6$ from

$$
x=-1 \text { to } x=3 .
$$

3) Find the area of the region bounded by $y=x^{2}-3 x+12$ and $y=18+x-x^{2}$.
4) Find the area of the region between $y=x+1$ and $y=7-x$ from $x=2$ to $x=5$.
5) Find the area of the region between $y=3 x^{3}-x^{2}-10 x$ and $y=-x^{2}+2 x$.
6) Find the area of the region bounded by $y=x^{3}$ and the line $y=2 x$.

1.9.2 \quad Area Under the Curve

Definition (9.2.1): If $f(x)$ is positive continuous function on $[a, b]$. Then the area of region bounded by the curve $f(x)$ and x - axis and the lines $x=a$ and $x=b$ is

$$
\text { A }=\text { Area }={ }^{7}{ }_{a}^{b} f(x) d x
$$

Remark (9.2.1): If $f(x)$ is negative and continuous on $[a, b]$. Then the area of region bounded by the curve $f(x)$ and x-axis and the lines $x=a$ and $x=b$ is

$$
\text { A }=\text { Area }=-{ }^{7}{ }_{a}^{b} f(x) d x
$$

Example (4): Find the area of the region bounded by $y=x^{2}$ and x - axis and the lines $x=1$ and $x=3$.
$A=\int_{a}^{b} f(x) d x=\int_{1}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{3}=\frac{27}{3}-\frac{1}{3}=\frac{26}{3}$
Solution:
unit area.

Example (5): Find the area of the region by up the x-axis and under the curve $y=4 x-x^{2}$. Solution:

We find the intersection point with x - axis.
$y=0 \Rightarrow 4 x-x^{2}=0 \Rightarrow x(4-x)=0 \Rightarrow x=0$
$x=4$
$\Rightarrow A=\int_{0}^{4}\left(4 x-x^{2}\right) d x=\left[\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{4}=\frac{32}{3}$
unit
area.

Exercises (9.2.1):
Find the area bounded by the curve $x=8+2 y-y^{2}$ and y-axis and the lines $y=3$ and $y=$

1.9.3 Area of the Surface

Definition (9.3.1): If the function $f(x)$ has a continuous first derivative throughout the interval $a \leq x \leq b$, the area of the surface generated by revolving the curve $y=f(x)$ about the x - axis is the number

$$
S={ }^{7 .}{ }_{a}^{b} 2 \pi y \quad \mathrm{~s} \quad 1+\quad \frac{d y}{d x}{ }^{2} d x
$$

Remark (9.3.1): If the function $x=g(y)$ has a continuous first derivative throughout the interval $c \leq y \leq d$, the area of the surface S generated by revolving the curve $x=g(y)$ about the y-axis is the number

Example (6): Find the area of the surface generated by revolving the curve $y=2$ $1 \leq x \leq 2$ about the x-axis.

Solution:

$$
\begin{aligned}
& S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& y=2 \sqrt{x} \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{x}} \Rightarrow 1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{1}{x}=\frac{x+1}{x} \\
& \Rightarrow S=\int_{1}^{2} 2 \pi 2 \sqrt{x} \frac{\sqrt{x+1}}{\sqrt{x}} d x=\left[4 \pi\left(\frac{2}{3}(x+1)^{\frac{3}{2}}\right)\right]_{1}^{2}=\frac{8 \pi}{3}\left(\sqrt{3^{3}}-\sqrt{2^{3}}\right) \\
& \quad=\frac{8 \pi}{3}(\sqrt{27}-\sqrt{8}) \text { unit area. }
\end{aligned}
$$

Example (7): Find the area of the surface generated by revolving the curve $y=1-x$,
$0 \leq y \leq 1$ about the y-axis.

Solution:

$$
\begin{aligned}
& S=\int_{c}^{d} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& y=1-x \Rightarrow x=1-y \Rightarrow \frac{d x}{d y}=-1 \Rightarrow 1+\left(\frac{d x}{d y}\right)^{2}=2 \\
& \Rightarrow S=\int_{0}^{1} 2 \pi(1-y) \sqrt{2} d y=2 \sqrt{2} \pi \int_{0}^{1}(1-y) d y=2 \sqrt{2} \pi\left[y-\frac{y^{2}}{2}\right]_{0}^{1}=2 \sqrt{2} \pi\left[\left(1-\frac{1}{2}\right)-0\right] \\
& -\quad=2 \sqrt{ } 2 \pi \times \frac{1}{\mathbb{2}}=\sqrt{ } 2 \pi \\
& \text { unit area. }
\end{aligned}
$$

Example (8): The circle $x^{2}+y^{2}=9$ revolving about x-axis find the area of the surface generated by the revolving.

Solution:

$$
\begin{aligned}
& S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& y= \sqrt{9-x^{2}} \Rightarrow \frac{d y}{d x}=\frac{-x}{\sqrt{9-x^{2}}} \\
& \Rightarrow S=\int_{-3}^{3} 2 \pi \sqrt{9-x^{2}} \sqrt{1+\frac{x^{2}}{9-x^{2}}} d x=\int_{-3}^{3} 2 \pi \sqrt{9-x^{2}} \sqrt{\frac{9-x^{2}+x^{2}}{9-x^{2}}} d x \\
&=\int_{-3}^{3} 2 \pi \sqrt{9-x^{2}} \sqrt{\frac{9}{9-x^{2}}} d x=\int_{-3}^{3} 2 \pi \sqrt{9-x^{2}} \\
& \sqrt{9-x^{2}}
\end{aligned} d x=\int_{-3}^{3} 6 \pi d x=[6 \pi x]_{-3}^{3}{ }^{3} .
$$

Exercises (9.3.1):

Find the area of the surface generated by revolving the curve $y=\cos (x), 0 \leq x \leq \frac{\pi}{2}$ about the x-axis.

1.9.4 Length of an Arc of a Curve

Definition (9.4.1): If the function $f(x)$ has a continuous first derivative throughout the interval $a \leq x \leq b$ the length of the curve $y=f(x)$ from \underline{a} to \underline{b} is the number:

$$
L=7_{a}^{7^{b}} 1+\frac{d y}{d x}^{2} d x
$$

Remark (9.4.1):

1) If $x=g(y), c \leq y \leq d$ then $\quad L={ }_{c^{7}}{ }^{d \mathbf{S}} \overline{{ }_{c}} 1+\frac{d x}{d y}{ }^{2} d y$

Example (9): Find the length of the curve; $\frac{4 \sqrt{2}}{3} x^{\frac{3}{2}}-1,0 \leq x \leq 1$.
Solution:
$y^{\prime}=2 \sqrt{2} x^{\frac{1}{2}} \Rightarrow 1+\left(y^{\prime}\right)^{2}=1+8 x$
$\therefore L=\int_{0}^{1} \sqrt{1+8 x} d x=\left[\frac{1}{8} \frac{(1+8 x)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}=\left[\frac{1}{12} \sqrt{(1+8 x)^{3}}\right]_{0}^{1}=\frac{1}{12}(\sqrt{729}-\sqrt{1})$
$=\frac{1}{12}(27-1)=\frac{26}{12}=\frac{13}{6}$ unit length.

Example (10): Find the length of the curves; $y=1-\cos (\theta), x=\theta-\sin (\theta), 0 \leq \theta \leq 2 \pi$.
Solution:

$$
\begin{aligned}
L & =\int_{\theta_{1}}^{\theta_{2}} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\int_{\theta_{1}}^{\theta_{2}} \sqrt{(1-\cos (\theta))^{2}+(\sin (\theta))^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{1-2 \cos (\theta)+\cos ^{2}(\theta)+\sin ^{2}(\theta)} d \theta=\int_{0}^{2 \pi} \sqrt{2-2 \cos (\theta)} d \theta \\
& =2 \int_{0}^{2 \pi} \sqrt{\sin ^{2}\left(\frac{1}{2} \theta\right)} d \theta=2 \int_{0}^{2 \pi} \sin \left(\frac{1}{2} \theta\right) d \theta=\left[-4 \cos \left(\frac{1}{2} \theta\right)\right]_{0}^{2 \pi} \\
& =-4(-1-1)=8 \text { unit length. }
\end{aligned}
$$

Exercises (9.4.1):

1) Find the length of the curve; $y=e^{x}$ from $x=1$ to $x=2$.2) Find
the length of the curve; $y=x^{2}$ such that $0 \leq x \leq 1$.

1.9.5 Volumes

Solids of revolution are solids whose shapes can be generated by revolving plan regions about axes.
i. Disk Method

Definition (9.5.1): Volume of a solid of revolution (Rotation about the x - axis). the volume of the solid generated by revolving the region between the graph of a continuous function $y=f(x)$ and the x-axis from $x=a$ to $x=b$ about the x-axis is:

$$
V=\text { Volume }={ }_{a}^{7 .} \pi(f(x))^{2} d x \quad \cdots(1)
$$

- Volume of a solid of revolution (Rotation about the y-axis) is:

$$
V=\text { Volume }={ }_{a}^{\text {7. }}{ }_{a}^{b} \pi(f(y))^{2} d y \quad \cdots(2)
$$

Example (11): The region between the curve $y=x^{2}, x=0, x=$ 2 and x - axis, is revolved about x - axis. Find its volume.

$$
V=\pi{ }_{a}^{7 \cdot}{ }_{a}^{b}(f(x))^{2} d x=\pi{ }_{0}^{7 \cdot x^{2}} x^{4} d x=\pi{\frac{x^{5}}{5}}_{0}^{2}=\frac{32 \pi}{5}
$$

Example (12): The region enclosed by the semicircle $a-x$ and $x-$ axis is revolved about the $x-$ axis to generated a sphere. Find the volume of the sphere.

$$
\begin{aligned}
V & =\pi^{7^{a}}{ }^{a}{ }^{\mathrm{n}}{\overline{a^{2}-x^{2}}}^{2} d x=\pi^{7 \cdot}{ }_{-a}^{a}\left(a^{2}-x^{2}\right) d x \\
& =\pi a^{2} x-\frac{x^{3}}{3}{ }_{-a}^{a}=\pi \quad a^{3}-\frac{a^{3}}{3}--a^{3}+\frac{a^{3}}{3} \\
& =\pi \frac{2 a^{3}}{3}+\frac{2 a^{3}}{3}=\frac{4}{3} \pi a^{3}
\end{aligned}
$$

Solution:
$y=\begin{array}{lll}\sqrt{ } \\ & 2\end{array}$

Solution:

ملاحظة:
 (ـ اذا كانت الثريحة عمودية على x (dx) والدوران حول x تستخدم طريقة القرص (المعادلة (1)).
 ץ - اذا كانت الثشريحة عمودية على y (dy) والدوران حول y تستخدم طريقة القزص (المعادلة (ץ)).

Exercises (9.5.1):

1) The region between the curve $x=\frac{1}{\sqrt{y}}, 1 \leq y \leq 4$ is revolved about the y - axis to generate a solid. Find the volume of the solid.
$\sqrt{ }$
2) Find the volume generated by revolving the region bounded by $y=x$ and the lines y $=1$ and $x=4$ about the line $y=1$.

ii. Washer Method

Definition (9.5.2): Let f and g be continuous and nonnegative on $[a, b]$, and suppose that $f(x) \geq g(x)$ for all x in the interval $[a, b]$, then the volume of the solid generated by revolving the region bounded above by $y=f(x)$, below by $y=g(x)$ and on the sides by the lines $x=$ a and $x=b$ about the $x-a x i s$ is:

$$
\begin{equation*}
V=\text { Volume }={ }_{a}^{7 .} \pi(f(x))^{2}-(g(x))^{2} d x \tag{1}
\end{equation*}
$$

- Volume of a solid of revolution (Rotation about the y - axis) is:

$$
V=\text { Volume }={ }^{7 \cdot{ }_{a}^{b} \pi(f(y))^{2}-(g(y))^{2} d y} \quad \cdots(2)
$$

Example (13): The area between the curve $y=x$ and $y=x$ is revolved about x - axis to generated a solid.

Find the volume of the solid.

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left(y_{2}^{2}-y_{1}^{2}\right) d x=\pi \int_{0}^{1}\left(x-x^{2}\right) d x=\pi\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\pi\left[\left(\frac{1}{2}-\frac{1}{3}\right)-(0)\right]=\frac{\pi}{6}
\end{aligned}
$$

Solution:

Example (14): The region bounded by the parabola $y=x^{2}$ and the line $y=2 x$ is revolved about the line $x=2$ parallel to the y-axis. Find the volume of the solid.

Solution:

$$
\begin{aligned}
x & =\frac{y}{2} \text { and } x=-\sqrt{y} \\
\frac{y}{2} & =\sqrt{y} \Rightarrow \frac{y^{2}}{4}=y \Rightarrow 4 y=y^{2} \Rightarrow 4 y-y^{2}=0 \Rightarrow y=0 \text { and } y=4 \\
V & =\pi \int_{0}^{4}\left(R^{2}(y)-r^{2}(y)\right) d y \\
& =\pi \int_{0}^{4}\left(\left(2-\frac{y}{2}\right)^{2}-(2-\sqrt{y})^{2}\right) d y \\
& =\pi \int_{0}^{4}\left(\frac{y^{2}}{4}-3 y+4 \sqrt{y}\right)=\pi\left[\frac{y^{3}}{12}-\frac{3 y^{2}}{2}+\frac{8}{3} y^{\frac{3}{2}}\right]_{0}^{4}=\frac{8}{3} \pi
\end{aligned}
$$

Exercises (9.5.2):

1) Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}-2 x$ and $y=x$ about the line $y=4$.
2) Find the volume of the solid generated when the region between the graphs of the equations $f(x)=\frac{1}{2}+x^{2}$ and $g(x)=x$ over the interval $[0,2]$ is revolved about the $x-$ axis.

iii. Cylindrical Shell (Shell Method)

Definition (9.5.3): Let $y=f(x)$ be continuous and nonnegative on the interval $[a, b](0 \leq a$ $<b)$, and let R be the region that is bounded above by $y=f(x)$, below by x-axis, and on the sides by the lines $x=a$ and $x=b$. Then, the volume of the solid generated by revolving the region R about the y-axis is given by:

$$
V=\text { Volume }={ }_{a}^{7 \cdot}{ }_{a}^{b} 2 \pi x f(x) d x \quad \cdots(1)
$$

- $x=g(y), c \leq y \leq d$ about x - axis is;

$$
V=\text { Volume }={ }_{c}^{7 .{ }^{d}} 2 \pi y g(y) d y \quad \cdots(2)
$$

ملخطة:

Example (15): Find the volume of the solid generated when the region enclosed between V_{-}
$y=\quad x, x=1, x=4$, and the x-axis is revolved about the y-axis.

Solution:

First sketch the region (Figure a); then imagine revolving

$$
\begin{array}{rlr}
V & =2 \pi \int_{a}^{b} x f(x) d x=2 \pi \int_{1}^{4} x \sqrt{x} d x & \text { it about the } y- \\
& =2 \pi \int_{1}^{4} x^{\frac{3}{2}} d x=2 \pi\left[\frac{2}{5} x^{\frac{5}{2}}\right]_{1}^{4}=\frac{124 \pi}{5} \quad \begin{array}{l}
\text { axis (Figure } b \text {). } \\
\text { Example (16): } \\
\text { Use cylindrical }
\end{array}
\end{array}
$$

(a)

(b) about the x-axis the region under the curve $y=x$ from 0 to 1 .

Solution:

$$
\left.\begin{array}{rl}
\therefore V & \text { If } y=\sqrt{ } x_{-} \Rightarrow x=y_{2} \\
& =2 \pi\left[\frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{1}=\frac{\pi}{2}
\end{array}\right)
$$

Exercises (9.5.3):

1) The region bounded by the parabola $y=x^{2}$, the y - axis and the line $y=1$ is revolved about the line $x=2$ to generate a solid. Find the volume of the solid.
2) The region bounded by the curve $y=x^{3}$, the x-axis and the line $x=1$ is revolved about x - axis to generate a solid. Find the volume of the solid.

2

Sequences and Series

2.1 Sequences:

Definition (2.1.1): An infinite sequence of numbers is a function whose domain is the set of all positive integers.
i.e : A function $f: \mathrm{Z}^{+} \rightarrow X$ where X is any set, called a sequence in X.

Remark (2.1.1):

1) Since the sequence is a function and has domain Z^{+}, then we can to say the sequence by the set: $\left\{(n, f(n)) / n \in \mathbb{Z}^{+}\right\}$
2) Since the domain all the sequence is the set \mathbf{Z}^{+}, then $:\left\{(n, f(n)) / n \in \mathbb{Z}^{+}\right\}=\{f(n)\}$
3) If $f(n)=a_{n}$, then the sequence $\{f(n)\}$ is written as: $\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots\right\}$ Example (1):

$$
f(n)=\frac{1}{n+1}, n \in \mathbb{Z}^{+}
$$

$\Rightarrow\left\{\frac{1}{n+1}\right\}_{n=1}^{+\infty}=\left\{\frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n+1}, \cdots\right\}=\{f(n)\}_{n=1}^{+\infty}$
The number $f(n)$ is the $n-t h$ terms of the sequence or the term with index n.

Example (2): $f(n)=\cos \left(\frac{n \pi}{2}\right), n \in \mathbb{Z}^{+}$
$\Rightarrow\left\{\cos \left(\frac{n \pi}{2}\right)\right\}_{n=1}^{+\infty}=\{0,-1,0,1,0,-1, \cdots\}$

$$
50
$$

Example (3):

The terms	$n-t h$ terms	The sequence
$0,1,2,3, \cdots$	$n-1$	$\{n-1\}_{n=1}^{+\infty}$
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$	$\frac{1}{n}$	$\left\{\frac{1}{n}\right\}_{n=1}^{+\infty}$
$1, \frac{-1}{2}, \frac{1}{3}, \frac{-1}{4}, \cdots$	$(-1)^{n+1} \frac{1}{n}$	$\left\{(-1)^{n+1} \frac{1}{n}\right\}_{n=1}^{+\infty}$
$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots$	$\frac{n-1}{n}$	$\left\{\frac{n-1}{n}\right\}_{n=1}^{+\infty}$
$0, \frac{-1}{2}, \frac{2}{3}, \frac{-3}{4}, \cdots$	$(-1)^{n+1} \frac{n-1}{n}$	$\left\{(-1)^{n+1} \frac{n-1}{n}\right\}_{n=1}^{+\infty}$
$3,3,3,3, \cdots$	$\frac{n}{2 n+1}$	$\left\{\frac{n}{2 n+1}\right\}_{n=1}^{+\infty}$
$\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \cdots$	$\{3\}_{n=1}^{+\infty}$	

Theorem (2.1.1):
The sequence $\left\{a_{n}\right\}$ is convergent if $\lim _{n \rightarrow \infty} a_{n}=L$ (the limit is exist and finite). If no such limit exists, we say that $\left\{a_{n}\right\}$ is divergent.

$\lim _{n \rightarrow \infty} \frac{4 n^{2}}{2 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{\frac{4 \pi^{2}}{n^{2}}}{\frac{2 n^{2}}{\frac{2}{2}^{2}}+\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{4}{2+\frac{1}{n^{2}}}=\frac{4}{2+\frac{1}{\infty}}=\frac{4}{2+0}=2_{n z}$
\therefore The sequence is convergent.
Example (5): Show that whether $\left\{\frac{e^{n}}{n}\right\}_{n=1}^{+\infty}$ convergent or not.
Solution:
$\lim =\quad \begin{array}{ll}e^{n} & \infty \\ \lim _{n \rightarrow \infty} & \frac{e^{n}}{1}=\frac{\infty}{1}=\infty\end{array}$ $n \rightarrow \infty n \infty$
\therefore The sequence is divergent.

Theorem (2.1.2): Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequence such that $\lim a_{n}=$ a and $\lim b_{n}=b_{n \rightarrow \infty} \quad n \rightarrow \infty$ and are finite, then:

1) $\lim _{n \rightarrow \infty} k a_{n}=k \lim _{n \rightarrow \infty} a_{n}=k a \quad ; k$ is constant.
2) $\lim \left(a_{n} \mp b_{n}\right)=\lim a_{n} \mp \lim b_{n}=a \mp b_{n \rightarrow \infty} \quad n \rightarrow \infty \quad n \rightarrow \infty$
3) $\lim _{n \rightarrow \infty}\left(a_{n} \times b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \times \lim _{n \rightarrow \infty} b_{n}=a \times b$
4) $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}=\frac{a}{b} \quad \lim _{; n \rightarrow \infty} b_{n} \neq 0$
5) If $\lim _{n \rightarrow \infty} a_{n}=\infty \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{1}{a_{n}}\right)=0$
6) $\lim _{n \rightarrow \infty} a_{n}^{r}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{r}=a^{r}, \forall r$ is real number such that a^{r} is exist.
7) $\lim _{n \rightarrow \infty} r^{a_{n}}=r^{\left(\lim _{n \rightarrow \infty} a_{n}\right)}=r^{a}, \forall r$ is real number.

Example (6): Test the following sequences are convergent or not.
$\left\{2^{\frac{1}{n}}\right\}_{n=1}^{+\infty}$ 1)2)3)
$\left\{\sqrt{\frac{n+1}{n}}\right\}_{n=1}^{+\infty}$
$\left\{\frac{\ln (n)}{n}\right\}_{n=1}^{+\infty}$
$\left\{\frac{5}{n^{2}}\right\}_{n=1}^{+\infty}$ 4)5)6)
$\left\{\frac{4-7 n^{6}}{n^{6}+3}\right\}_{n=1}^{+\infty}$
$\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{+\infty}$ 7)
$\left\{\frac{2 n}{5 n+1}\right\}_{n=1}^{+\infty}$
8) $\{2 n\}_{n=1}^{+\infty}$
9) $\left\{\left(1-\frac{2}{n}\right)^{n}\right\}_{n=1}^{+\infty}$

Solution:

1) $\lim _{n \rightarrow \infty} 2^{\frac{1}{n}}=2^{\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)}=2^{0}=1$
\therefore The sequence is convergent.
2) $\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{n}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{n}}=\sqrt{1}=1$
\therefore The sequence is convergent.
$\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\infty$
3) $\Rightarrow \lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{1}=\frac{0}{1}=0$
\therefore The sequence is convergent.
4) $\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=\frac{5}{\infty}=0$
\therefore The sequence is convergent.
5) $\lim _{n \rightarrow \infty} \frac{4-7 n^{6}}{n^{6}+3}=\lim _{n \rightarrow \infty} \frac{\frac{4}{n^{6}}-\frac{7 n^{6}}{n^{6}}}{\frac{n^{6}}{\frac{6}{6}}+\frac{3}{n^{6}}}=\frac{0-7}{1+0}=-7$
\therefore The sequence is convergent ${ }^{n}$.
6)

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n}) & =\lim _{n \rightarrow \infty}\left(\sqrt{n+1}-\sqrt{n} \times \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)=\lim _{n \rightarrow \infty} \frac{n_{k}+1-n_{k}}{\sqrt{n+1}+\sqrt{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt{n+1}+\lim _{n \rightarrow \infty} \sqrt{n}} \\
& =\frac{1}{\infty+\infty}=\frac{1}{\infty}=0
\end{aligned}
$$

\therefore The sequence is convergent.
7) $\lim _{n \rightarrow \infty} \frac{2 n}{5 n+1}=\lim _{n \rightarrow \infty} \frac{2}{5+\frac{1}{n}}=\frac{2}{5+0}=\frac{2}{5}$
\therefore The sequence is convergent.
8) $\lim _{n \rightarrow \infty} 2 n=\infty$
\therefore The sequence is divergent.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n} & =\lim _{n \rightarrow \infty} e^{\ln \left(1-\frac{2}{n}\right)^{n}}=e^{\lim _{n \rightarrow \infty} \ln \left(1-\frac{2}{n}\right)^{n}}=e^{\lim _{n \rightarrow \infty} n \ln \left(1-\frac{2}{n}\right)} \\
= & e^{\lim _{n \rightarrow \infty} \frac{\ln \left(1-\frac{2}{n}\right)}{\frac{1}{n}}}=e^{\frac{0}{0}} \\
& =e^{\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n-2}{n}\right)}{\frac{1}{n}}}=e^{\lim _{n \rightarrow \infty} \frac{\frac{n}{n-2} \times \frac{n-n+2}{n^{2}}}{\frac{-1}{n^{2}}}}=e^{\lim _{n \rightarrow \infty} \frac{-2 n}{n-2}}=e^{\frac{-2}{1}}=e^{-2}
\end{aligned}
$$

9)

\therefore The sequence is convergent.
Example (7): Show that $\left\{\frac{n^{2}}{2 n+1} \sin \left(\frac{\pi}{n}\right)\right\}_{n=1}^{\infty}$ is convergent.
Solution:
$\frac{n^{2}}{2 n+1} \sin \left(\frac{\pi}{n}\right)=\left(\frac{n}{2 n+1}\right)\left(n \sin \left(\frac{\pi}{n}\right)\right)$
let $a_{n}=\frac{n}{2 n+1}$ and $b_{n}=n \sin \left(\frac{\pi}{n}\right)$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2} \Rightarrow\left\{a_{n}\right\}$ is convergent
$\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} n \sin \left(\frac{\pi}{n}\right)$
let $m=\frac{\pi}{n} \Rightarrow n=\begin{gathered}\pi \\ m —\end{gathered}$
\Rightarrow If $n \rightarrow \infty \Rightarrow m \rightarrow 0$
$\therefore \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} n \sin \left(\frac{\pi}{n}\right)=\lim _{m \rightarrow 0} \frac{\pi}{m} \sin (m)=\pi \lim _{m \rightarrow 0} \frac{\sin (m)}{m}=\pi \times 1=\pi$
$\Rightarrow\left\{b_{n}\right\}$ is convergent .
$\therefore \lim _{n \rightarrow \infty} \frac{n^{2}}{2 n+1} \sin \left(\frac{\pi}{n}\right)=\frac{1}{2} \times \pi=\frac{\pi}{2} \Rightarrow$ The sequence is convergent.
Theorem (2.1.3):
If a sequence $\left\{a_{n}\right\}$ convergent, then its limit is unique.

Definition (2.1.2): A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called:
increasing if $a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots$ (i.e., $a_{n} \leq a_{n+1}, \forall n$). decreasing if
$a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots$ (i.e., $\left.a_{n} \geq a_{n+1}, \forall n\right)$.
A sequence that is either increasing or decreasing is said to be monotonic.

Example (8): Explain the following sequences monotonic or not?

1) $\{n\}_{n=1}^{\infty}$
2) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$
3) $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$

Solution:

1) $\{n\}_{n=1}^{\infty}=\{1,2,3, \cdots\}$

Since $n \leq n+1 \Rightarrow a_{n} \leq a_{n+1} \Rightarrow\{n\}_{n=1}^{\infty}$ is increasing.
Hence the sequence $\{n\}_{n=1}^{\infty}$ is monotonic.
2) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$

Since $a_{n}=\frac{1}{n} \quad, \quad a_{n+1}=\frac{1}{n+1}$
$\because n+1 \geq n \Rightarrow \frac{1}{n+1} \leq \frac{1}{n} \Rightarrow a_{n+1} \leq a_{n} \Rightarrow\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is decreasing
Hence the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is monotonic.
$\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$
3) $a_{n}=\frac{(-1)^{n}}{n}, \quad a_{n+1}=\frac{(-1)^{n+1}}{n+1}=-\frac{(-1)^{n}}{n+1}$
i) If n is odd
$\Rightarrow a_{n}=\frac{-1}{n}$ and $a_{n+1}=\frac{1}{n+1} \Rightarrow a_{n} \leq a_{n+1}$
\therefore The sequence is increasing.
ii) If n is even

$$
\Rightarrow a_{n}=\frac{1}{n} \text { and } a_{n+1}=\frac{-1}{n+1} \Rightarrow a_{n+1} \leq a_{n}
$$

\therefore The sequence is decreasing.

Hence the sequence $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$ is not monotonic .
Exercises (2.1.1): Show that whether the following sequences are convergent or not?

$$
\begin{aligned}
& \{2\}_{n=1}^{\infty} \quad\left\{n \sin \left(\frac{\pi}{n}\right)\right\}_{n=1}^{\infty} \quad \text { 1)2)3) } \quad\left\{\ln \left(\frac{1}{n}\right)\right\}_{n=1}^{\infty} \\
& \left\{\frac{n^{2}}{2 n+1}\right\}_{n=1}^{\infty} \quad\left\{(-1)^{n} \frac{2 n^{3}}{n^{3}+1}\right\}_{n=1}^{\infty} \\
& \text { 4)5)6) } \quad\left\{\frac{\pi^{n}}{4^{n}}\right\}_{n=1}^{\infty} \\
& \left\{\left(\frac{n+3}{n+1}\right)^{n}\right\}_{n=1}^{\infty} \text { 7)8) }\left\{\sqrt{n^{2}+3 n}-n\right\}_{n=1}^{\infty}
\end{aligned}
$$

Exercises (2.1.2): Write a formula for the n-th term a_{n} of the following sequence and test the sequence is converge or not?

$$
0.7,0.77,0.777,0.7777, \cdots
$$

Definition (2.1.3): A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that $a_{n} \leq$ $M, \forall n \in \mathrm{Z}^{+}$and it is bounded below if there is a number m such that $m \leq a_{n, n} \in \mathrm{Z}^{+}$. If it is bounded above and below, then $\left\{a_{n}\right\}$ is bounded sequence.

Example (9):

1) $\{n\}_{n=1}^{\infty}=\{1,2,3, \cdots\}$ bounded below by 1 .
2) $\{1,1,2,2,3,3, \cdots\}$ bounded below by 1 .
3) $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$ bounded below by 0 and bounded above by 1 .
4) $\{1,-1,1,-1, \cdots\}$ bounded below by -1 and bounded above by 1 .

Theorem (2.1.4):
Every bounded and monotonic sequence is convergent.

Example (10): Show that $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ convergent sequence.
Solution:
Since $n+1 \geq n \Rightarrow \frac{1}{n+1} \leq \frac{1}{n} \Rightarrow a_{n+1} \leq a_{n} \Rightarrow\left\{a_{n}\right\}$ decreasing \Rightarrow monotonic sequence.
$\because a_{n}=\frac{1}{n} \leq 1, \forall n \Rightarrow\left\{\frac{1}{n}\right\}_{\text {bounded above by 1. }} \quad a_{n}=\frac{1}{n} \geq 0, \forall n \Rightarrow\left\{\frac{1}{n}\right\}_{\text {bounded below }}$
by $0 \Rightarrow\left\{\frac{1}{n}\right\}$ bounded sequence.
$\Rightarrow\left\{\frac{1}{n}\right\}_{\text {convergent sequence (by Theorem (2.1.4)). }}$
Example (11): Show that whether $\left\{\left(2^{n}+3^{n}\right)^{\frac{1}{n}}\right\}_{n=1}^{\infty}$ is convergent sequence or not? Solution:

$$
\begin{aligned}
& \because 2^{n}<3^{n} \Rightarrow 2^{n}+3^{n} \leq 3^{n}+3^{n} \Rightarrow 2^{n}+3^{n} \leq 2 \times 3^{n} \Rightarrow\left(2^{n}+3^{n}\right)^{\frac{1}{n}} \leq\left(2 \times 3^{n}\right)^{\frac{1}{n}} \\
& 2^{n}+3^{n} \geq 2^{n} \Rightarrow\left(2^{n}+3^{n}\right)^{\frac{1}{n}} \geq 2, \forall n \in \mathbb{Z}^{+} \Rightarrow\left\{\left(2^{n}+3^{n}\right)^{\frac{1}{n}}\right\}_{n}^{\infty} \quad \text { bounded below by } 2 . \\
& \Rightarrow\left(2^{n}+3^{n}\right)^{\frac{1}{n}} \leq 2^{1} \times 3=6 \quad\left(\text { since } 2^{n} \leq 2\right) \\
& \Rightarrow\left\{\left(2^{n}+3^{n}\right)^{\frac{1}{n}}\right\}_{n=1}^{\infty} \text { bounded above by } 6 \Rightarrow\left\{\left(2^{n}+3^{n}\right)^{\frac{1}{n}}\right\}_{n=1}^{\infty} \text { bounded sequence. } \\
& \left(2^{n}+3^{n}\right)^{\frac{n+1}{n}}=\left(2^{n}+3^{n}\right)\left(2^{n}+3^{n}\right)^{\frac{1}{n}}>\left(2^{n}+3^{n}\right)\left(3^{n}\right)^{\frac{1}{n}}=3\left(2^{n}+3^{n}\right)=\left(3 \times 2^{n}+3 \times 3^{n}\right) \\
& >\left(2 \times 2^{n}+3 \times 3^{n}\right)=\left(2^{n+1}+3^{n+1}\right) \Rightarrow\left(2^{n}+3^{n}\right)^{\frac{n+1}{n}}>\left(2^{n+1}+3^{n+1}\right) \\
& \Rightarrow\left(\left(2^{n}+3^{n}\right)^{\frac{n+1}{n}}\right)^{\frac{1}{n+1}}>\left(2^{n+1}+3^{n+1}\right)^{\frac{1}{n+1}} \Rightarrow\left(2^{n}+3^{n}\right)^{\frac{1}{n}}>\left(2^{n+1}+3^{n+1}\right)^{\frac{1}{n+1}} \Rightarrow a_{n}>a_{n+1} \\
& \Rightarrow \text { decreasing sequence } \Rightarrow \text { monotonic sequence } \Rightarrow \text { convergent sequence. }
\end{aligned}
$$

Theorem (2.1.5):
Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be three sequences and let $a_{n} \leq b_{n} \leq c_{n}, \forall n$ such that $\lim a_{n}$ $=\lim c_{n}=L$, where L is constant, then $\lim b_{n}=L . n \rightarrow \infty \quad n \rightarrow \infty \quad n \rightarrow \infty$

Example (12): Test the convergent of the following

1) $\left\{\frac{\sin (n)}{n}\right\}_{n=1}^{\infty}$
2) $\left\{\frac{\cos ^{2}(2 n)}{4 n^{2}}\right\}_{n=1}^{\infty}$

Solution:

1) Since $-1 \leq \sin (n) \leq 1 \Rightarrow \frac{-1}{n} \leq \frac{\sin (n)}{n} \leq \frac{1}{n}$

$$
\because \lim _{n \rightarrow \infty} \frac{-1}{n}=-\lim _{n \rightarrow \infty} \frac{1}{n}=-1 \times 0=0
$$

$$
\because \lim _{n \rightarrow \infty} \frac{1}{n}=0 \Rightarrow \lim _{n \rightarrow \infty} \frac{-1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{\sin (n)}{n}=0 \Rightarrow\left\{\frac{\sin (n)}{n}\right\}_{n=}^{\infty}
$$

Since $-1 \leq \cos (2 n) \leq 1 \Rightarrow 0 \leq \cos ^{2}(2 n) \leq 1 \Rightarrow \frac{0}{4 n^{2}} \leq \frac{\cos ^{2}(2 n)}{4 n^{2}} \leq \frac{1}{4 n^{2}}$

$$
\Rightarrow 0 \leq \frac{\cos ^{2}(2 n)}{4 n^{2}} \leq \frac{1}{4 n^{2}}
$$

$$
\because \lim _{n \rightarrow \infty} 0=0 \text { and } \lim _{n \rightarrow \infty} \frac{1}{4 n^{2}}=0 \Rightarrow \lim _{n \rightarrow \infty} 0=\lim _{n \rightarrow \infty} \frac{1}{4 n^{2}}=0
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{\cos ^{2}(2 n)}{4 n^{2}}=0 \Rightarrow\left\{\frac{\cos ^{2}(2 n)}{4 n^{2}}\right\}_{n=}^{\infty}
$$

2.2 Geometric Sequence:

Definition (2.2.1): The sequence of the form $\left\{a r^{n-1}\right\}_{n=1}^{\infty}$ is called geometric sequence, where a, and r are fixed real number and $a 6=0$.
i.e; $\left\{a r^{n-1}\right\}_{n=1}^{\infty}=\left\{a, a r, a r^{2}, \cdots, a r^{n-1}, \cdots\right\}$

$$
b_{1}=a, b_{2}=a r, b_{3}=a r^{2}, \cdots, b_{n}=a r^{n-1}
$$

Theorem (2.2.1):
If $\left\{a r^{n-1}\right\}_{n=1}^{\infty}$ is geometric sequence then,

$$
\left\{\operatorname{ar}^{n-1}\right\}_{n=1}^{\infty} \text { is }\left\{\text { converge }_{\text {if } r=1} \text { diverge }_{\text {if } r>}>\right.
$$

Example (1): Test the convergent and write the first three terms of the following sequences.

1) $\left\{5^{n-1}\left(\frac{9}{10}\right)^{n}\right\}_{n=1}^{\infty} \quad$ 2) $\left\{\frac{1}{2^{n-1}}\right\}_{n=1}^{\infty}$

Solution:

$$
\begin{aligned}
& 5^{n-1}\left(\frac{9}{10}\right)^{n}=5^{n-1}\left(\frac{9}{10}\right)^{n-1+1}=5^{n-1}\left(\frac{9}{10}\right)^{n-1}\left(\frac{9}{10}\right)=\left(\frac{9}{10}\right)\left(\frac{5^{1} \times 9}{10^{2}}\right)^{n-1} \\
& \text { 1) }=\frac{9}{10}\left(\frac{9}{2}\right)^{n-1} \Rightarrow\left\{5^{n-1}\left(\frac{9}{10}\right)^{n}\right\}_{n=1}^{\infty}=\left\{\frac{9}{10}\left(\frac{9}{2}\right)^{n-1}\right\}_{n=1}^{\infty} \\
& \begin{aligned}
& \Rightarrow\left\{\frac{9}{10}\left(\frac{9}{2}\right)\right. \\
& b_{1}=a=\frac{9}{10}
\end{aligned} \\
& b_{2}=a r=\left(\frac{9}{10}\right)\left(\frac{9}{2}\right)=\frac{81}{20} \\
& b_{3}=a r^{2}=\left(\frac{9}{10}\right)\left(\frac{9}{2}\right)^{2}=\left(\frac{9}{10}\right)\left(\frac{81}{4}\right)=\frac{729}{40} \\
& \text { 2) } \frac{1}{2^{n-1}}=\left(\frac{1}{2}\right)^{n-1} \Rightarrow\left\{\frac{1}{2^{n-1}}\right\}_{n=1}^{\infty}=\left\{\left(\frac{1}{2}\right)^{n-1}\right\}_{\left.n=1 \text { converge (since }|r|=\left|\frac{1}{2}\right|<1\right) \text {. }}^{\infty} \\
& b_{1}=a=1 \\
& b_{2}=a r=1 \times \frac{1}{2}=\frac{1}{2} \\
& b_{3}=a r^{2}=1 \times\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
\end{aligned}
$$

2.3 Infinite Series

Definition (2.3.1): Geven a sequence of numbers $\left\{a_{n}\right\}$, an expression of the form $a_{1}+a_{2}+$ $a_{3}+\cdots+a_{n}+\cdots$ is called an infinite series. The number a_{n} is called the $n-t h$ term of the series.

The sequence $\left\{S_{n}\right\}$ defined as;

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& \quad \ldots \\
& S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}
\end{aligned}
$$

is the sequence of partial sums of the series.
~ If $\left\{S_{n}\right\}$ converge to a limit L then the series converge and that its sum is L.

$$
i . e ; a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}=L
$$

\sim If $\left\{S_{n}\right\}$ is not converge then the series diverge.
Example (1): Test the convergent of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ Solution:
$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots$
$S_{1}=a_{1}=\frac{1}{1 \times 2}=\frac{1}{2}=1-\frac{1}{2}$
$S_{2}=a_{1}+a_{2}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=1-\frac{1}{3}$
$S_{3}=a_{1}+a_{2}+a_{3}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}$

$$
\begin{aligned}
& S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)} \\
& \quad=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+\cdots-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1} \\
& \Rightarrow \\
& S_{n}=1-\frac{1}{n+1}=\frac{n}{n+1} \\
& \Rightarrow\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{\frac{n}{n}}{\frac{n}{n}+\frac{1}{n}}=1 \Rightarrow\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ convergent sequence.
$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converge series to 1 .
Example (2): Show that the series $0.333 \cdots$ is convergent.

Solution:

$0.333 \cdots=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots+\frac{3}{10^{n}}+\cdots$
$S_{1}=a_{1}=\frac{3}{10}$
$S_{2}=a_{1}+a_{2}=\frac{3}{10}+\frac{3}{10^{2}}$
$S_{3}=a_{1}+a_{2}+a_{3}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}$
$S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots+\frac{3}{10^{n}}$
multiplying (1) by $\frac{1}{10}$ we get:
$\frac{1}{10} S_{n}=\frac{3}{10^{2}}+\frac{3}{10^{3}}+\frac{3}{10^{4}}+\cdots+\frac{3}{10^{n+1}}$
we get:

$$
\begin{aligned}
& S_{n}-\frac{1}{10} S_{n}=\frac{3}{10}-\frac{3}{10^{n+1}} \\
& \Rightarrow \frac{9^{3}}{10} S_{n}=\frac{3}{10}\left(1-\frac{1}{10^{n}}\right) \Rightarrow S_{n}=\frac{1}{3}\left(1-\frac{1}{10^{n}}\right) \\
& \Rightarrow\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{3}\left(1-\frac{1}{10^{n}}\right)\right\}_{n=1}^{\infty} \\
& \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{1}{3}\left(1-\frac{1}{10^{n}}\right)=\frac{1}{3}\left[\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{10^{n}}\right]=\frac{1}{3}\left[1-\frac{1}{\infty}\right]=\frac{1}{3} \\
& \quad \Rightarrow\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{3}\left(1-\frac{1}{10^{n}}\right)\right\}_{n=1}^{\infty} \\
& \quad \text { sequence. } \\
& \Rightarrow \text { The series convergent }
\end{aligned}
$$

Theorem (2.3.1):
The necessary condition for the infinite series $a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots$ to converge is that $\lim _{n \rightarrow \infty} S_{n}=0$.
Remark (2.3.1):

1) The converse of theorem a bove is not true.

$$
\text { If } \sum_{n=1}^{\infty} S_{n} \text { 2)converge } \Rightarrow \lim S_{n}=0{ }_{n \rightarrow \infty}
$$

3) If $\lim _{n \rightarrow \infty} S_{n}=0 \Rightarrow \sum_{\text {either } n=1}^{\infty} S_{n}$ converge or diverge.
4) If $\lim _{n \rightarrow \infty} S_{n} \neq 0 \Rightarrow \sum_{n=1}^{\infty} S_{n}$ diverge.

Example (3): Test the converge of the following

1) $\sum_{n=1}^{\infty} \frac{2 n+1}{3 n+1}$
2) $\sum_{n=1}^{\infty} \frac{n}{n+1}$
3) $\sum_{n=1}^{\infty} \frac{1}{n+10}$

Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{2 n+1}{3 n+1}=\lim _{n \rightarrow \infty} \frac{2+\frac{1}{n}}{3+\frac{1}{n}}=\frac{2}{3} \neq 0 \\
& \Rightarrow \sum_{n=1} \frac{2 n+1}{3 n+1} \\
& \text { diverge. }
\end{aligned}
$$

2)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1 \neq 0 \\
& \Rightarrow \sum_{n=1}^{\infty} \frac{n}{n+1} \text { diverge. }
\end{aligned}
$$

3)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n+10}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{1+\frac{10}{n}}=\frac{0}{1+0}=0 \\
& \quad \sum_{\infty} \frac{1}{n+10} \text { diverge (we proof later). }
\end{aligned}
$$

Theorem (2.3.2):
Let $\mathrm{X}_{a_{n} \text { converge to } L_{1} \text { and }} \mathrm{X}_{b_{n} \text { converge to } L_{2} \text {, then 1) }} \mathrm{X}_{k a_{n} \text { converge to } k L_{1} \text {, where } k \text { is }}$ constant.

2.4 Geometric Series

Definition (2.4.1): An infinite series of the form:
? ∞
${ }^{1}$)

$$
\begin{aligned}
& 2 n-1 \quad \text { ????? }{ }^{2} n=1 \text { arn } n-1 a+a r+a r \\
& +\cdots+a r \quad+\cdots=\infty
\end{aligned}
$$

? ? ? ? ? ? $\mathrm{X}_{n=0} a r_{n}$

is called a geometric series, in which a and r are fixed real number and $a 6=0$.

Theorem (2.4.1):

$$
\begin{aligned}
& \mathrm{X}_{n-1}^{\infty} \text { ? ? ? ? ? ? ? ? }{ }^{\text {? }} \text { ? converge to } \frac{a}{1-r} \quad \text { if }|r|<1 \mathrm{ar} \\
& n=1 \quad= \\
& \sum^{\infty} a r^{n} \\
& 1 \text { (diverge } \\
& \text { if }|r| \geq 1
\end{aligned}
$$

Example (1): Test the converge of the following

1) $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$
2) $\sum_{n=0}^{\infty} 5^{n-1}\left(\frac{9}{10}\right)^{n}$

Solution:

1) $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n-1} \Rightarrow a=1, r=\frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \text { converge to } \frac{a}{1-r}=\frac{1}{1-\frac{1}{2}}=\frac{1}{1}=2_{\text {since }}^{\infty}\left(|r|=\left|\frac{1}{2}\right|<1\right) \\
& \sum_{n=0}^{\infty} 5^{n-1}\left(\frac{9}{10}\right)^{n}=\sum_{n=0}^{\infty} 5^{n} 5^{-1}\left(\frac{9}{10}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{5}\left(\frac{5^{1} \times 9}{10^{n^{2}}}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{5}\left(\frac{9}{2}\right)^{n} \\
& \Rightarrow a=\frac{1}{5}, r=\frac{9}{2} \\
& \Rightarrow \sum_{n=0}^{\infty} 5^{n-1}\left(\frac{9}{10}\right)^{n} \text { diverge since }\left(|r|=\left|\frac{9}{2}\right|=4.5>1\right)
\end{aligned}
$$

Example (2): Explain the geometric series convergent or divergent. Find the partial sums of the series $\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots$ Solution:
$\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots=\frac{1}{9}\left(1+\frac{1}{3}+\frac{1}{9}+\cdots\right)=\frac{1}{9} \sum_{n=1}^{\infty} \frac{1}{3^{n-1}}=\sum_{n=1}^{\infty} \frac{1}{9}\left(\frac{1}{3}\right)^{n-1}$
$\Rightarrow a=\frac{1}{9}, r=\frac{1}{3}$
Since ${ }^{r}=\frac{1}{3} \Rightarrow$ the geometric series is converge.
$\Rightarrow \sum_{k=1}^{n} a r^{k-1}=\frac{a}{1-r}=\frac{\frac{1}{9}}{1-\frac{1}{3}}=\frac{1}{6}$
Example (3): Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}-\frac{4}{2^{n-1}}\right)_{\text {Solution: }}$
$\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}-\frac{4}{2^{n-1}}\right)=\sum_{n=1}^{\infty} \frac{3}{n(n+1)}-\sum_{n=1}^{\infty} \frac{4}{2^{n-1}}=3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}-4 \sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$
Since $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converge to 1 .
$\Rightarrow 3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
$\infty \quad$ converge to $(3 \times 1)=3$.

$$
\sum_{n=1} \frac{1}{2^{n-1}}
$$

Since $\infty_{\infty} \quad$ converge to 2 .
$\Rightarrow 4 \sum_{n=1} \frac{1}{2^{n-1}}$ converge to $(4 \times 2)=8$.
$\Rightarrow \sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}-\frac{4}{2^{n-1}}\right)$ converge to $(3-8)=-5$.
Exercises (2.4.1): Test the convergence of the following.

1) $\sum_{n=1}^{\infty} \frac{4}{3^{n-1}}$
2) $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$

2.5 Test For Convergence

1. p-Series:

The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converge if $p>1$ and diverge if $p \leq 1$.

Example (1): Test the convergence of the following
1)

$$
\sum_{n=1}^{\infty} \frac{1}{n} \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}
$$

Solution:

1) $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge since $p=1$.
2) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converge since $p=2>1$.
3) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}}$ diverge since $p=\frac{1}{3}<1$.
2. Comparison Test:

Let $\quad \sum_{n=1}^{\infty} U_{n} \sum_{n=1}^{\infty} V_{n}$ be two series with non-negative terms, then
$\sim \sum_{\text {If }} \sum_{n=1}^{\infty} V_{n}$ is known to be a convergent series then, $n=1$
$\sim \sum_{\sim}^{\infty} V_{n} \sum_{\text {if }}^{\infty} U_{n}$ is known to be a divergent series then, $n=1 \quad$ divergent too if $U_{n} \geq V_{n}, \forall n$ Example
(2): Test the convergence of the following

$$
\left.\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \quad \sum_{n=1}^{\infty} \frac{1}{\ln (n)} \quad \sum_{n=1}^{\infty} \frac{1}{n} 1\right)
$$

Solution:
1)
$\because n+1>n, \forall n \Rightarrow n(n+1)>n^{2}, \forall n \Rightarrow \frac{1}{n(n+1)} \leq \frac{1}{n^{2}}, \forall n$
$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
since $\sum \frac{1}{n^{2}}$ converge by p-test.
$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converge by comparison test.
2)
$\because \ln (n)<n, \forall n \Rightarrow \frac{1}{\ln (n)} \geq \frac{1}{n} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{\ln (n)} \geq \sum_{n=1}^{\infty} \frac{1}{n}$
since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge by $p-$ test.
$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{\ln (n)}$ diverge by comparison test.
3) $1!=1=2^{0}$

$$
2!=1 \times 2=2^{1}
$$

$3!=1 \times 2 \times 3=6>2^{2}$
$4!=1 \times 2 \times 3 \times 4=24>2^{3}$
$n!>2^{n-1}$
$\Rightarrow \frac{1}{n!}<\frac{1}{2^{n-1}}, \forall n \in Z^{+}$
$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n!}<\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$
since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ test.

$$
\sum_{n=1}^{\infty} \frac{1}{n}!
$$

3. Integration Test:

Suppose that there is a decreasing continuous function $f(x)$, such that $f(x)=U_{n}$ is the $n-t h$ term of the positive series $\mathrm{X}_{U_{n}}$, then the series and the integral, $\int_{1}^{\infty} f(x) d x$

$$
n=1
$$

both converge or diverge.
Example (3): Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n+10}$ Solution:

$$
\begin{aligned}
f(x)=\frac{1}{x+10} \Rightarrow \int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{x+10} d x=[\ln (x+10)]_{1}^{\infty} & =\ln (\infty+10)-\ln (11) \\
& =\infty
\end{aligned}
$$

$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n+10}$ diverge by integration test.

Exercises (2.5.1): Test the convergence of the following.

1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{2^{n}}$
2) $\sum_{n=1}^{\infty} \frac{1}{1+\ln (n)}$
$\sum_{n=1}^{\infty} \frac{2}{2^{n}+3}$
3) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$
4) $\sum_{n=1}^{\infty} n e^{-n^{2}}$
$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}$
5) $\sum_{n=1}^{\infty} \frac{\ln (n)}{2 n^{3}-1}$
6) $\sum_{n=1}^{\infty} \frac{1}{(2 n+1)!}$
7)
8) $\sum_{n=1}^{\infty} \frac{n}{n+2}$
9) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
4. Infinite Series With Alternating Signs:

Theorem (2.5.1):
The series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-\cdots+a_{n}-\cdots \quad$ converge if:

1) $\left|a_{n+1}\right|<\left|a_{n}\right|, \forall n$
2) $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$

Example (4): Test the convergence of the following series

1) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$
2) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}$

Solution:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n+1}}{n}+\cdots
$$

1) $\left|a_{1}\right|=|1|=1,\left|a_{1}\right|=\left|-\frac{1}{2}\right|=\frac{1}{2}, \cdots$
i. $\left|a_{n+1}\right|<\left|a_{n}\right|$

$$
\frac{1}{2}<1 \& \frac{1}{3}<\frac{1}{2} \& \cdots
$$

ii. $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
\therefore The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent.
2) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}$
i. $(2 n+1)!<(2 n+3)!\Rightarrow \frac{1}{(2 n+1)!}>\frac{1}{(2 n+3)!} \Rightarrow\left|a_{n+1}\right|<\left|a_{n}\right|, \forall n$
ii. $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{(2 n+1)!}=0$
\therefore The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}$ is convergent.

5. Absolute and Conditional Convergence:

Theorem (2.5.2):

A series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots$
is said to be absolute convergent if the
corresponding series of absolute values $n=1 \quad \sum_{n=1}^{\infty}\left|a_{n}\right|$, is convergent. But if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverge while the series $\sum_{n=1}^{\infty} a_{n}$ conditionally.
Example (5): Test the convergence of the series $\sum_{n=1} \frac{(-1)^{n+1}}{n}$
Solution:
Since $^{\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}} \quad \sum_{n}^{\infty}\left|\frac{(-1)^{n+1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent series, but ${ }_{n=1}$
\therefore the series $\sum_{n=1} \frac{(-1)^{n+1}}{n}$ converge conditionally.
Example (6): Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ Solution:
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=1-\frac{1}{4}+\frac{1}{9}-\cdots+\frac{(-1)^{n+1}}{n^{2}}-\cdots$

1) $\left|a_{1}\right|=|1|=1 \&\left|a_{2}\right|=\left|\frac{-1}{4}\right|=\frac{1}{4} \&\left|a_{3}\right|=\frac{1}{9} \& \cdots \Rightarrow\left|a_{n+1}\right|<\left|a_{n}\right|$
2) $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$
\therefore The series is convergent. Now,
$\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{\substack{n=1 \\ \infty}}^{\infty} \frac{1}{n^{2}}$
Since the series $\sum \frac{1}{n^{2}}$ convergent by p - test.
\therefore The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ i
\therefore The series $n=1 \quad n^{2} \quad$ is convergent absolutely.

Remark (2.5.1):

Every absolutely convergent series is convergent (the converse is not true).
6. Ratio Test:

The alternative series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converge absolutely (and hence convergent) if:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho<1 \text {. And diverge if } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho>1 \text {. And if } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1 \text {, then }
$$

the series may converge or it may diverge (the test provide no information)
Example (7): Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ Solution:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}}{(n+1)!} \times \frac{n!}{2^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n} 2}{(n+1) n!} \times \frac{n!}{2^{n}}\right|=2 \lim _{n \rightarrow \infty} \frac{1}{n+1}=0<1$
\therefore The series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ is convergent.
Example (8): Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n-1}}{n+4}$ Solution:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n}}{n+5} \times \frac{n+4}{2^{n-1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n}}{n+5} \times \frac{n+4}{2^{n} 2^{-1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2(n+4)}{(n+5)}\right|$

$$
=2 \lim _{n \rightarrow \infty} \frac{n+4}{n+5}=2 \times 1=2>1
$$

\therefore The series $\sum_{n=1}^{\infty} \frac{2^{n-1}}{n+4}$ is divergent.
Example (9): Test the convergence of the series $\sum_{n=0}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$ Solution:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+4)!}{3!(n+1)!3^{n+1}} \times \frac{3!n!3^{n}}{(n+3)!}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+4)(n+3)!}{3!(n+1) n!33^{n}} \times \frac{3!n!3^{n}}{(n+3)!}\right|$
$=\lim _{n \rightarrow \infty}\left|\frac{(n+4)}{3(n+1)}\right|=\lim _{n \rightarrow \infty} \frac{(n+4)}{3(n+1)}=\frac{1}{3} \lim _{n \rightarrow \infty} \frac{(n+4)}{(n+1)}=\frac{1}{3} \times 1=\frac{1}{3}<1$
\therefore The series $\sum_{n=0}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$ is convergent.

Example (10): Find all value of x for which the given series converge: $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{2^{n} n^{2}}$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x+1)^{n+1}}{2^{n+1}(n+1)^{2}} \times \frac{2^{n} n^{2}}{(-1)^{n}(x+1)^{n}}\right|<1$
$\Rightarrow \lim _{n \rightarrow \infty}\left|\frac{(-1)(x+1) n^{2}}{2(n+1)^{2}}\right|<1 \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{(-1)(x+1)}{2}\left(\frac{n}{n+1}\right)^{2}\right|<1$
$\Rightarrow \frac{|x+1|}{2} \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2}<1 \Rightarrow \frac{|x+1|}{2} \times 1<1 \Rightarrow|x+1|<2$
$\Rightarrow-2<x+1<2 \Rightarrow-3<x<1$
$\infty \quad n \quad n \quad \infty$
Solution:
$x=-3 \Rightarrow \sum_{n=1} \frac{(-1)(-2)}{2^{n} n^{2}}=\sum_{n=1} \frac{1}{n^{2}}$ converge by p-test.
$\therefore x=-3$
at $x=1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}(2)^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ which converge.
$\therefore x=1$
\therefore The value is, $-3 \leq x \leq 1$

Exercises (2.5.2): Test the convergence of the following.

$$
\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{100}} \quad \text { 1)2) } \quad!\quad \sum_{n=1}^{\infty} \frac{2^{n} n!n}{(2 n)!}
$$

Exercises (2.5.3): Find all value of x for which the given series converge:

1) $\sum_{n=1}^{\infty} \frac{n x^{n}}{2^{n}}$
2) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$

2.6 Power Series:

Definition (2.6.1): Power series are defined by:

$$
\sum_{n=0}^{\infty} C_{n}(x-a)^{n} \underline{\underline{\mathcal{O R}}} \sum_{n=0}^{\infty} C_{n} x^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots
$$

in which the center a and the
coefficients $C_{0}, C_{1}, C_{2}, \cdots, C_{n}, \cdots$ are constant.
Theorem (2.6.1):
∞
Let $\mathrm{X}_{C_{n}(x-a)^{n}}$, be any power series, where $k \geq 0$, then: $n=k$

1) The series converge only when $x=a$.
2) The series converge for all x.
3) There is a number $<>0$ such that the series is convergent if $|x-a| \ll$ and it is divergent if $|x-a|><$. And may converge or diverge when $|x-a|=<$. This number < is called the radius of convergence. And the interval of convergence is $(-<+a,<+a)$.
Example (1): Test the convergence of the series $\sum_{n=1}^{\omega} n!(x-1)^{n}$ Solution:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x-1)^{n+1}}{n!(x-1)^{n}}\right|=\lim _{n \rightarrow \infty}|(n+1)(x-1)|=|x-1| \lim _{n \rightarrow \infty}(n+1)$

$$
=|x-1| \times \infty=\infty
$$

\Rightarrow The series is divergent for all $x 6=1$ and when $x=1$ the sum of the series is 0 . In this case we say the radius of convergence is $0(<=0)$ and the interval of convergence is the point $x=1$.

Example (2): Test the convergence of the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ Solution:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \times \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=|x| \times 0=0<1$
The series is convergent for all x and the radius of convergence is $(<=\infty)$ and the interval of convergence is $(-\infty, \infty)$.

Example (3): Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n^{3}}$
Solution:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(3 x)^{n+1}}{(n+1)^{3}} \times \frac{n^{3}}{(3 x)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(3 x) n^{3}}{(n+1)^{3}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(3 x) n^{3}}{n^{3}+3 n^{2}+3 n+1}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(3 x) \frac{n^{3}}{n n^{3}}}{\frac{3 n}{n^{3}}+\frac{3 \pi^{2}}{n^{3^{m^{n}}}}+\frac{3 n^{2}}{n^{3^{n^{2}}}}+\frac{1}{n^{3}}}\right|=\left|\frac{(3 x) \times 1}{1+0+0+0}\right|=|3 x|
\end{aligned}
$$

The series is convergent if $|3 x|<1 \Rightarrow|x|<\frac{1}{3} \Rightarrow\left|x-0^{a}\right|<\frac{1}{3}$
and it is divergent if $|3 x|>1 \Rightarrow|x|>\frac{1}{3} \Rightarrow\left|x-0^{a}\right|>\frac{1}{3}$. The radius of convergence is $\Re=\frac{1}{3}$ $x=-\frac{1}{3}$
when $\quad x=\frac{1}{3} \Rightarrow \sum_{n=1}^{\infty} \frac{\left(3 \times \frac{1}{3}\right)^{n}}{n^{3}}=\sum^{\infty} \frac{1}{n^{3}}$ convergent by p - test
when $x=-\frac{1}{3} \Rightarrow \sum_{n=1}^{\infty} \frac{\left(3 \times \frac{-1}{3}\right)^{n^{n=1}}}{n^{3}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$ absolutely convergent and therefore convergent.

Hence, the interval of convergence is $\left[-\frac{1}{3}, \frac{1}{3}\right]$

Exercises (2.6.1): Test the convergent of the following.

1) $\sum_{n=0}^{\infty} \frac{(-1)^{n} n!x^{n}}{10^{n}}$
2) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}$
3) $\sum_{n=}^{\infty} \frac{(2 x-1)^{n}}{n 2^{n}}$

2.7 Representation of Function by Power Series:

$f(x)=\frac{1}{1-x}=1+x+x^{2}+\cdots=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$

Example (1): Represent the following function by power series:

1) $f(x)=\frac{1}{1+x}$
2) $f(x)=\frac{2}{2-3 x}$

Solution:

1) $f(x)=\frac{1}{1-(-x)}=1+(-x)+(-x)^{2}+\cdots{ }_{\text {for }}|-x|<1$

$$
=1-x+x^{2}-x^{3}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

$$
f(x)=\frac{2}{2-3 x}=\frac{1}{1-\frac{3}{2} x}=1+\left(\frac{3}{2} x\right)+\left(\frac{3}{2} x\right)^{2}+\left(\frac{3}{2} x\right)^{3}+\cdots
$$

2)

$$
=1+\frac{3}{2} x+\frac{9}{4} x^{2}+\frac{27}{8} x^{3}+\cdots=\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} x^{n} \quad \text { for }|x|<\frac{2}{3}
$$

Theorem (2.7.1):

Suppose that the function $f(x)$ can be representation by power series ${ }^{X_{n} X^{n}}$, then $n=0$

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\frac{d}{d x}\left(\sum_{n=0}^{\infty} C_{n} x^{n}\right) \\
\int f(x) d x & =\int \sum_{n=0}^{\infty} n C_{n} x^{n-1} \\
\int C_{n} x^{n} d x & =\sum_{n=0}^{\infty} \frac{C_{n} x^{n+1}}{n+1}
\end{aligned}
$$

1)
2)

Example (2): Represent the following function by power series $f(x)=\tan ^{-1}(x)$ Solution:
Since $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1+\left(-x^{2}\right)+\left(-x^{2}\right)^{2}+\left(-x^{2}\right)^{3}+\cdots$ for $\left|-x^{2}\right|<1$
$\Rightarrow \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots$
$\Rightarrow \int \frac{1}{1+x^{2}} d x=\int\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x$
$\Rightarrow \tan ^{-1}(x)=x-\frac{\stackrel{3}{x}}{3}+\frac{\stackrel{5}{x}}{5}-\frac{7}{7}+\cdots$
$\Rightarrow \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$

$$
\text { for }|x|<1
$$

2.8 Taylor and Maclaurin Series:

Definition (2.8.1): Taylor series of a function $f(x)$ at $x=a$ is $\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}$ It is a power series centered at a.

Definition (2.8.2): Maclaurin series of a function $f(x)$ is a Taylor series at $x=0$.
i.e : $\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n}$
where f^{n} is the derivative of f with n degree and $f^{(0)}=f \& 0!=1$

Example (1): Find the maclaurin expansion of $f(x)=\sin (x)$

Solution:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n} \\
& f^{(0)}(x)=f(x)=\sin (x) \Rightarrow f(0)=\sin (0)=0 \\
& f^{\prime}(x)=\cos (x) \Rightarrow f^{\prime}(0)=\cos (0)=1 \\
& f^{\prime \prime}(x)=-\sin (x) \Rightarrow f^{\prime \prime}(0)=-\sin (0)=0 \\
& f^{\prime \prime \prime}(x)=-\cos (x) \Rightarrow f^{\prime \prime \prime}(0)=-\cos (0)=-1 \\
& f^{(4)}(0)=0, f^{(5)}(0)=1, f^{(6)}(0)=-1, \cdots \\
& \therefore f(x)=\sin (x)=\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n} \\
& =\frac{f(0)}{0!} x^{0}+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \\
& =0+x+0-\frac{x^{3}}{3!}+0+\frac{x^{5}}{5!}+0-\frac{x^{7}}{7!}+\cdots \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& \Rightarrow \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Example (2): Find the maclaurin expansion of $f(x)=e^{x}$ Solution:
$f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n}$
$f^{(0)}(x)=f(x)=e^{x} \Rightarrow f(0)=e^{0}=1$
$f^{\prime}(x)=e^{x} \Rightarrow f^{\prime}(0)=e^{0}=1$
$f^{\prime \prime}(x)=e^{x} \Rightarrow f^{\prime \prime}(0)=e^{0}=1$
$f^{\prime \prime \prime}(x)=e^{x} \Rightarrow f^{\prime \prime \prime}(0)=e^{0}=1$
$f^{(4)}(0)=1, f^{(5)}(0)=1, f^{(6)}(0)=1, \cdots$
$\therefore f(x)=e^{x}=\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n}=\frac{f(0)}{0!} x^{0}+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots$

$$
=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

$\Rightarrow e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

Exercises (2.8.1): Find the maclaurin expansion of the following functions.

1) $f(x)=\cos (x)$
2) $f(x)=\sin \left(x^{2}\right)$
3) $f(x)=\frac{\sin (x)}{x}$
4) $f(x)=x^{2} e^{x}$

Example (3): Find the taylor expansion of $f(x)=\frac{1}{x}$ at $a=2$
Solution:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}=\sum_{n=0}^{\infty} \frac{f^{n}(2)}{n!}(x-2)^{n} \\
& f^{(0)}(x)=f(x)=x^{-1} \Rightarrow f(2)=2^{-1} \\
& f^{\prime}(x)=(-1) x^{-2} \Rightarrow f^{\prime}(2)=(-1)(2)^{-2} \\
& f^{\prime \prime}(x)=(-1)(-2) x^{-3} \Rightarrow f^{\prime \prime}(2)=(-1)(-2)(2)^{-3} \\
& f^{\prime \prime \prime}(x)=(-1)(-2)(-3) x^{-4} \Rightarrow f^{\prime \prime \prime}(2)=(-1)(-2)(-3)(2)^{-4}
\end{aligned}
$$

$$
f^{(n)}(x)=(-1)(-2)(-3) \cdots(-n) x^{-(n+1)}=(-1)^{n} n!x^{-(n+1)} \Rightarrow f^{(n)}(2)=(-1)^{n} n!(2)^{-(n+1)}
$$

$$
\Rightarrow f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} n!2^{-(n+1)}}{n!}(x-2)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(x-2)^{n}
$$

Example (4): Find the taylor expansion of $f(x)=e^{-2 x}$ at $a=\frac{1}{2}$ Solution:

$$
\begin{aligned}
& f(x)=e^{-2 x} \Rightarrow f\left(\frac{1}{2}\right)=e^{-2 \times \frac{1}{2}}=e^{-1}=\frac{1}{e} \\
& f^{\prime}(x)=(-2) e^{-2 x} \Rightarrow f^{\prime}\left(\frac{1}{2}\right)=(-2) e^{-1}=\frac{-2}{e}=\frac{(-1)^{1} 2^{1}}{e} \\
& f^{\prime \prime}(x)=(-2)(-2) e^{-2 x} \Rightarrow f^{\prime \prime}\left(\frac{1}{2}\right)=(-2)(-2) e^{-1}=\frac{(-1)^{2} 2^{2}}{e} \\
& f^{\prime \prime \prime}(x)=(-2)(-2)(-2) e^{-2 x} \Rightarrow f^{\prime \prime \prime}\left(\frac{1}{2}\right)=\frac{(-1)^{3} 2^{3}}{e} \\
& \quad \vdots \\
& f^{(n)}(x)=\underbrace{(-2)(-2) \cdots(-2)} e^{-2 x}=(-1)^{n} 2^{n} e^{-2 x} \\
& \Rightarrow f^{(n)}\left(\frac{1}{2}\right)=(-1)^{n} 2^{n} e^{-1}=\frac{(-1)^{n} 2^{n}}{e} \\
& \Rightarrow f(x)=\sum_{n=0}^{\infty} \frac{f^{n}\left(\frac{1}{2}\right)}{n!}\left(x-\frac{1}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{\frac{(-1)^{n} 2^{n}}{e}}{n!}\left(x-\frac{1}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e(n!)}(2 x-1)^{n}
\end{aligned}
$$

Exercises (2.8.2):

1) Find the taylor expansion of $f(x)=\frac{1}{x}$ at $a=1$
2) Find the taylor expansion of $f(x)=e^{-x}$ at $a=0$

JI<<• >>|

