Computation Theory

Context-Free Grammar (CFG)

Lecturer: Baida Al kinzawi

Context-Free Grammar (CFG)

CFG stands for context-free grammar. It is a formal grammar which is used to
generate all possible patterns of strings in a given formal language. Context-free
grammar G can be defined by four tuples as:

G=(N,T,PS) Where:
. 1- G is the grammar, which consists of a set of the production rule. It is used to -

generate the string of a language.

2- T is the final set of a terminal symbol. It is denoted by lower case letters.

3- N is the final set of a non-terminal symbol. It is denoted by capital
letters.

4- P is a set of production rules, which is used for replacing non-
terminals symbols (on the left side of the production) in a string with

other terminal or non-terminal symbols (on the right side of the
-production). .

5- S is the start symbol which is used to derive the string. We can
derive the string by repeatedly replacing a non-terminal by the right-
hand side of the production until all non-terminal have been replaced
by terminal symbols.

Example: Let G(L) = ({S}, {a}, P, S), where P is:

S—aS rulel

S —>A rule 2
If we apply production (S — aS) four times and then apply production (S =A) we
generate the following string: a*

S — aS using rule 1
- aaS using rule 1
— aaaS using rule 1
— aaaaS using rule 1
— aaaa using rule 2

The RE = a* can generate a set of string {A, a, aa, aaa.,.....}. We can have a null
string because S 1s a start symbol and rule 2 gives S —A .

Aapall 5 (BELEVI (pe s ya (gl 8 a6l gl shadll (e dae (gL) KAl Sy asly ac) gall sa 8 Jaadl
{a", n > 0 by n steps} cac) gal) 02 (pe dailill LU dalall

Example: Construct a CFG for the regular expression (0+1)*

Solution:
. The CFG can be given by,

Production rule (P):
S—0S|IS
S — A
The rules are in the combination of 0's and 1's with the start symbol. Since (0+1)*

indicates {A, 0, 1,01, 10, 00, 11, ...}.

T ——— S e e e e

Example: Construct a CFG for a language L = {wew™: w € (a, b)*}.

Solution:
The string that can be generated for a given language 1s {aacaa, bcb, abeba, bacab,

abbcbba, ...}

The grammar could be:

S—aSa rulel
S—bSb rule?2
S—e¢ rule 3

Now 1f we want to derive a string "abbcbba", we can start with start symbols.

S — aSa
— abSba using rule 2
— abbSbba using rule 2
— abbcbba using rule 3

Thus any of this kind of string can be derived from the given production rules.

Example: Construct a CFG for the language {a"b** where n>=1}.

|
Solution: ;
The string that can be generated for a given language 1s {abb, aabbbb, aaabbbbbb,

The grammar could be: there is another grammar (H.W)
S — aSbb | abb

Now 1f we want to derive a string "aabbbb", we can start with start symbols.
S — aSbb
— aabbbb

Homework: Construct a CFG for the language {a™ b" | m >=n}

Derivation Trees

Derivation tree is a graphical representation for the derivation of
the given production rules for a given CFG. It is the simple way to

show how the derivation can be done to obtain some string from

. a given set of production rules. .

The derivation tree 1s also called parse tree or syntax tree or parse

tree of generation tree or production tree or derivation tree.

The properties of parse tree are:

1- Root: The root node is always a node indicating start symbols.
2- PSG: The interior nodes are always the non-terminal nodes.
3- Leaves: The leaf node is always terminal nodes.

4- Links: collection of connections.

JS g oaill Jl) (& @ el (A el i) (a5 Phrase Structure Grammar (PSG)
e dxy) ge i) 5S35 (Terminal At) sa)l) dledl) (8 Jpat A dpda o 5l) 3l
PSG =(N, T, P, S)

Derivation Derivation is a sequence of production rules. It is used to get the input

string through these production rules. During parsing, we have to take two
decisions.

These are as follows:

- We have to decide the non-terminal which is to be replaced.
- We have to decide the production rule by which the non-terminal will be

. replaced.

We have two options to decide which non-terminal to be placed with
production rule.

1. Leftmost Derivation: In the leftmost derivation, the input is

scanned and replaced with the production rule from left to right. So in
leftmost derivation, we read the input string from left to right.

N — t | Nt - Leftmost Derivation

Example: Let G(L) = ({S}, {a, b, c}, P, S), where P 1s:
S— SbS|ScS|a
Find the string ““abaca” |

S — SbS S — ScS |
— abS — SbScS |
— abScS — abScS
— abacS — abacS

Accept

. — abaca Accept — abaca
(S (SO
CORNCY o O O
D G2 (5 CSP (2

<> <> GO

2. Rightmost Derivation: In rightmost derivation, the input is scanned

and replaced with the production rule from right to left. So in rightmost
derivation, we read the input string from right to left.

N — t [tN - Rightmost Derivation
S — SbS

— SbScS

— SbSca

— Sbaca

— abaca Accept

P

S - ScS
— Sca
— SbSca
— Sbaca
— abaca

Accept

Examples of Derivation:

Example 1:
Derive the string "abb" for leftmost derivation and rightmost derivation using a |
CFG given by, |
S— AB | A 9 |
A — aB

B Sb (A2 (B

Solution:

Leftmost derivation: o e

S — AB
— aBB
— aSbB

— aAbB

— abSb

— abADb o
— abb

Rightmost derivation:
S— AB

— ASb

— AAb

— aBb

— aSbb

— aAbb
— abb

Example 2:
Derive the string "aabbabba" for leftmost derivation and rightmost derivation

using a CFG given by,
S — aB | bA
A —al|aS |bAA
B —b|aS|aBB

Solution:
Leftmost derivation:
S — aB

— aaBB
— aabB
— aabb$S
— aabbaB
— aabbab$S
— aabbabbA
— aabbabba

Rightmost derivation:
S — aB

— aaBB
— aaBb$S
— aaBbbA
— aaBbba
— aabSbba
— aabbAbba
— aabbabba

Thanks for listenin

	Slide 1: Computation Theory
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

