
جامعة ذي قار

رفةكلية التربية للعلوم الص

قسم علوم الحاسبات

➢ Modularity is the single attribute of software that allows

 a program to be intellectually manageable.

➢ Monolithic software (i.e., a large program composed of

 a single module) cannot be easily grasped by a reader.

 Meyer defines five criteria that enable us to evaluate a design

method with respect to its ability to define an effective

modular system:

 Modular decomposability : If a design method provides

 a systematic mechanism for decomposing the problem into sub

problems, it will reduce the complexity of the overall problem,

thereby achieving an effective modular solution.

2

 Modular composability : If a design method enables existing

(reusable) design components to be assembled into a new

system, it will yield a modular solution that does not reinvent

the wheel.

 Modular understandability : If a module can be understood

as a standalone unit (without reference to other modules), it

will be easier to build and easier to change.

 Modular continuity : If small changes to the system

requirements result in changes to individual modules, rather

than systemwide changes, the impact of change-induced side

effects will be minimized.

 Modular protection : If an aberrant condition occurs within

a module and its effects are constrained within that module,

the impact of error-induced side effects will be minimized.

3

 In fact, modularity has become an accepted approach in all

 engineering disciplines. A modular design reduces complexity,

 facilitates change (a critical aspect of software maintainability)

and results in easier implementation by encouraging parallel

development of different parts of a system.

4

 The concept of functional independence is a direct outgrowth

of modularity and the concepts of abstraction and information

hiding. In landmark papers on software design Parnas and

Wirth allude to refinement techniques that enhance module

independence. Later work by Stevens, Myers and Constantine

solidified the concept.

 Functional independence is achieved by developing modules

with "single-minded“ function and an "aversion" to excessive

interaction with other modules.

 Independent modules are easier to maintain and test because

secondary effects caused by design or code modification are

limited, error propagation is reduced, and reusable modules

are possible.

5

 To summarize, functional independence is a key to

good design and design is the key to software quality.

 Independence is measured using two qualitative

criteria: cohesion and coupling.

6

➢ Cohesion is a measure of the relative functional strength of

 a module.

➢ A cohesive module performs a single task within a software

procedure, requiring little interaction with procedures being

performed in other parts of a program.

➢ Cohesion may be represented as a "spectrum“. We always

strive for high cohesion, although the mid-range of the

spectrum is often acceptable. The scale for cohesion is

nonlinear. In practice, a designer need not be concerned with

categorizing cohesion in a specific module. Rather, the overall

concept should be understood and low levels of cohesion

should be avoided when modules are designed.

7

➢ A module that performs tasks that are related logically

 (e.g., a module that produces all output regardless of type) is

logically cohesive.

➢ The module is called when computed data exceed prespecified

bounds. It performs the following tasks:

 (1) Computes supplementary data based on original computed

data.

 (2) Produces an error report (with graphical content) on the

user's workstation.

 (3) Performs follow-up calculations requested by the user.

 (4) Updates a database.

 (5) Enables menu selection for subsequent processing.

8

 Although the preceding tasks are loosely related, each is an

independent functional entity that might best be performed as

a separate module.

 As we have already noted, it is unnecessary to determine the

precise level of cohesion. Rather it is important to strive for

high cohesion and recognize low cohesion so that software

design can be modified to achieve greater functional

independence.

9

❖ Coupling is a measure of interconnection among modules in

 a software structure.

❖ Coupling depends on the interface complexity between

modules, the point at which entry or reference is made to

a module, and what data pass across the interface.

❖ In software design, we strive for lowest possible coupling.

❖ Figure (1) provides examples of different types of module

coupling. Modules a and d are subordinate to different

modules. Each is unrelated and therefore no direct coupling

occurs. Module c is subordinate to module a and is accessed

via a conventional argument list, through which data are

passed.

10

❖ A variation of data coupling, called stamp coupling, is found

when a portion of a data structure is passed via a module

interface. This occurs between modules b and a.

❖ At moderate levels, coupling is characterized by passage of

control between modules. Control coupling is very common in

most software designs and is shown in Figure (1) where

 a “control flag” (a variable that controls decisions in

 a subordinate or superordinate module) is passed between

modules d and e.

❖ High coupling occurs when a number of modules reference

 a global data area.

11

12

Figure(1) Types of coupling

 Your design should be specific to the problem at hand but also
general enough to address future problems and requirements.

 The design of object oriented software requires the definition
of a multilayered software architecture.

 OOD is performed by a software engineer.

 OOD is divided into two major activities: system design and
object design.

 System design creates the product architecture, defining

 a series of “layers” that accomplish specific system functions
and identifying the classes that are encapsulated by
subsystems that reside at each layer. In addition, system design
considers the specification of three components: the user
interface, data management functions, and task management
facilities.

13

 Object design focuses on the internal detail of individual

classes, defining attributes, operations and message detail.

 What is the work product?

 An OO design model encompasses software architecture, user

interface description, data management components, task

management facilities and detailed descriptions of each class

to be used in the system.

➢ The unique nature of object-oriented design lies in its ability to

build upon four important software design concepts:

abstraction, information hiding, functional independence and

modularity.

➢ Object-oriented design, object-oriented programming and

object-oriented testing are construction activities for OO

systems.

14

 For object-oriented systems, we can also define a design

pyramid. The four layers of the OO design pyramid are :

1- The subsystem layer contains a representation of each of the

subsystems that enable the software to achieve its customer

defined requirements and to implement the technical

infrastructure that supports customer requirements.

2-The class and object layer contains the class hierarchies that

enable the system to be created using generalizations and

increasingly more targeted specializations. This layer also

contains representations of each object.

15

3- The message layer contains the design details that enable

each object to communicate with its collaborators. This layer

establishes the external and internal interfaces for the system.

4- The responsibilities layer contains the data structure and

algorithmic design for all attributes and operations for each

object. The design pyramid focuses exclusively on the design

of a specific product or system.

16

17

Figure (2) The OO design pyramid

18

*Software

Engineering

جامعة ذي قار
رفةكلية التربية للعلوم الص
قسم علوم الحاسبات

20

2.5 Software Process Models:

A process model :is a simplified

representation of a software process.

It is a set of ordered tasks, involving

activities, constraints and Resources

21

2.5.1 The Waterfall Model:
*One such approach/process used in Software Development is

"The Waterfall Model". Waterfall approach was first Process

Model to be introduced and followed widely in Software

Engineering to ensure success of the project. In "The Waterfall"

approach, the whole process of software development is

divided into separate process phases, these are:

 1) Requirement Specifications (analysis and definition).

 2) Software Design.

 3) Implementation.

 4) Testing.

 5) Maintenance.

22

*All these phases are cascaded to each other so that second
phase is started as and when defined set of goals are achieved
for first phase and it is signed off, so the name "Waterfall
Model".

 Waterfall Model Phases:

1- Requirements analysis and definition:

- All possible requirements of the system to be developed are
captured in this phase.

- Requirements then are analyzed for their validity and the
possibility of incorporating the requirements in the system to be
development is also studied.

- Finally, a Requirement Specification document is created
which serves the purpose of guideline for the next phase of the
model

23

*2- System and software design:

- System Design helps in specifying hardware and system requirements

and also helps in defining overall system architecture.

- The system design specifications serve as input for the next phase of the

model

3- Implementation and unit testing:

- On receiving system design documents, the work is divided in

modules/units and actual coding is started.

- The system is first developed in small programs called units, which are

integrated in the next phase.

- Each unit is developed and tested for its functionality referred to as Unit

Testing.

- Unit testing mainly verifies if the modules/units meet their

specifications.

24

*4- Integration and system testing

- The units are integrated into a complete system during Integration phase

and tested to check if all units/modules coordinate between each other

and the system as a whole behaves as per the specifications.

- After successfully testing the software, it is delivered to the customer

5- Operation and maintenance

- This phase of "The Waterfall Model" is virtually never ending phase

(Very long).

- Generally, problems with the system developed (which are not found

during the development life cycle) come up after its practical use starts, so

the issues related to the system are solved after deployment of the system.

- Not all the problems come in picture directly but they arise time to time

and needs to be solved- referred as Maintenance.

25

Waterfall Model Advantages:

*A waterfall model is easy to implementation.

*It helps to find errors earlier

*Easy to understand, easy to use.

*Works well when quality is more

*important than cost or schedule

*Documentation is produced at every stage

*of a waterfall model allowing people to understand what

has been done.

*Testing is done at every stage.

26

Waterfall Model Disadvantages:

*It is only suitable for the small size projects.

*Constant testing of the design is needed.

*If requirements may change the Waterfall model may not work.

*Difficult to estimate time and cost for each stage of the

development process.

*Adjust scope during the life cycle can kill a project.

*High amount of risk and uncertainty.

27

When to use the Waterfall Model:

- Requirements are very well known.

- Product definition is stable.

- Technology is understood.

- New version of an existing product.

- Porting an existing product to a new platform

28
The flow diagram of the waterfall model

29

Software Engineering

lec 9

جامعة ذي قار

كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

4.1 The Analysis Model

• The analysis model, actually a set of models, is the first

technical representation of a system.

• Analysis modeling uses a combination of text and diagrams to

represent software requirements (data, function and behavior) in

an understandable way.

• Building analysis models helps make it easier to uncover

requirement inconsistencies and omissions.

• Two types of analysis modeling are commonly used: structured

analysis and object-oriented analysis.

31

• Data modeling uses entity-relationship diagrams to define data

objects, attributes and relationships.

• Functional modeling uses data flow diagrams to show how data

are transformed inside the system.

• Behavioral modeling uses state transition diagrams to show the

impact of events.

32

4.2 Concepts of Structure Analysis

• Analysis products must be highly maintainable, especially the

software requirements specification.

• Problems of size must be dealt with using an effective method

of partitioning.

• Graphics should be used whenever possible.

• Differentiate between the logical (essential) and physical

(implementation) considerations.

• Find something to help with requirements partitioning and

document the partitioning before specification.

• Devise a way to track and evaluate user interfaces.

• Devise tools that describe logic and policy better than narrative

text.

33

4.3 Analysis Model Objectives

• Describe what the customer requires.

• Establish a basis for the creation of a software design.

• Define a set of requirements that can be validated once the

software is built.

34

4.4 The Elements of Analysis Model

• 4.4.1 Data dictionary:

• I. A tool for recording and processing information (metadata)

about the data that an organization uses.

• II. A central catalogue for metadata.

• III. Can be integrated within the DBMS or be separate.

• IV. May be referenced during system design, programming, and

by actively-executing programs.

• V. Can be used as a repository for common code (e.g. library

routines)..

35

36

DDS should provide two sets of facilities:

▪ To record and analyze data requirements independently

of how they are going to be met -

conceptual data models (entities, attributes, relationships).

 To record and design decisions in terms of database or

file structures implemented and the

programs which access them - internal schema.

One of the main functions of a DDS is to show the

relationship between the conceptual and

implementation views. The mapping should be

consistent - inconsistencies are an error and can

be detected here.

37

Benefits of a DDS:

▪ improved documentation and control

•• consistency in data use

•• easier data analysis

•• reduced data redundancy

•• simpler programming

•• the enforcement of standards

•• better means of estimating the effect of change.

38

:DDS Disadvantages

• • The DDS ‘project‘ may itself take two or three years.

• • It needs careful planning, defining the exact

requirements designing its contents, testing,

implementation and evaluation.

• • The cost of a DDS includes not only the initial price of its

installation and any hardware requirements, but also the

cost of collecting the information entering it into the DDS,

keeping it up-to-date and enforcing standards.

• • The use of a DDS requires management commitment,

which is not easy to achieve , particularly where the

benefits are intangible and long term.

39

40

41

SOFTWARE

ENGINEERING

جامعة ذي قار

كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

CHAPTER ONE

INTRODUCTION TO SOFTWARE

ENGINEERING
Topics

 1.1 Software Definition

 1.2 Software Characteristics

 1.3 Software Applications

 1.4 Software Crisis

 1.5 The Attributes of Good Software

 1.6 Software Engineering Definition

 1.7 The Characteristics of Software Engineer

 1.8 The Evolving Role of Software

 1.9 The Goals of Software Engineering

43

1.1 SOFTWARE DEFINITION

Software is

 (1) Instructions (computer programs) that when executed provide
desired function and performance,

 (2) Data structures that enable the programs to adequately manipulate
information

 (3) Documents that describe the operation and use of the programs.

 There are two fundamental types of software product :

 1- Generic products : developed to be sold to a range of

 different customers.

 Ex: product include software for PCs such as drawing

packages.

 2- Customized (or bespoke) products : developed for a single

 customer according to their specification.

 Ex: air traffic control system.
44

1.2 SOFTWARE CHARACTERISTICS

Software is a logical rather than a physical system element.

Therefore, software has characteristics that are considerably

different than those of hardware:

 1. Software is developed or engineered; it is not manufactured

 in the classical sense.

 Although some similarities exist between software development

and hardware manufacture, the two activities are

fundamentally different. In both activities, high quality is

achieved through good design, but the manufacturing phase

for hardware can introduce quality problems that are

nonexistent (or easily corrected) for software.

45

46
Figure (1) Failure curve for hardware

2. Software doesn't "wear out.“or get tired

• Figure (l) depicts failure rate as a function of time for

hardware. The relationship, often called the "bathtub

curve," indicates that hardware exhibits relatively high

failure rates early in its life (these failures are often

attributable to design or manufacturing defects).

• Software is not susceptible to the environmental maladies

that cause hardware to wear out. In theory, therefore, the

failure rate curve for software should take the form of the

"idealized curve" shown in Figure (2).

47

Figure (2) Idealized and actual failure curves for software 48

The idealized curve is a gross oversimplification of actual

failure models for software. During its life, software will

undergo change (maintenance).

Another aspect of wear illustrates the difference between

hardware and software. When a hardware component

wears out, it is replaced by a spare part. There are no

software spare parts.

Every software failure indicates an error in design or in the

process through which design was translated into machine

executable code. Therefore, software maintenance involves

considerably more complexity than hardware

maintenance.
49

3.Software continues to be custom built.

In the hardware world, component reuse is a natural part of the
engineering process. In the software world, it is something that
has only begun to be achieved on a broad scale.

A software component should be designed and implemented so
that it can be reused in many different programs.

Modern reusable components encapsulate both data and the
processing applied to the data, enabling the software engineer
to create new applications from reusable parts.

For example, today's graphical user interfaces are built using
reusable components that enable the creation of graphics
windows, pull-down menus, and a wide variety of interaction
mechanisms.

50

1.3 SOFTWARE APPLICATIONS

The following software areas indicate the breadth of potential
applications:

 1. System software: It is a collection of programs written
to service other programs. Some system software (e.g.
compilers, editors, and file management utilities) .

 2. Real-time software: Software that monitors/analyzes

 controls real world events as they occur is called real
time.

 real-time system must respond within strict time
constraints.

 3. Business software: Business information processing is
the largest single software application area.

51

4. Engineering and scientific software: modern applications

within the engineering/scientific area are moving away

from conventional numerical algorithms. Computer aided

design, system simulation, and other interactive

applications have begun to take on real-time.

5. Embedded software: Intelligent products have become

commonplace in nearly every consumer and industrial

market (e.g., keypad control for a microwave oven or

digital functions in an automobile such as fuel control, and

braking systems).

6. Personal computer software: Such as(Word processing,

spreadsheets, computer graphics, multimedia,

entertainment, database management). 52

7. Web-based software: The Web pages retrieved by a

browser are software that incorporates executable

instructions (e.g., HTML, Perl, or Java), and data (e.g.,

hypertext and a variety of visual and audio formats).

8. Artificial intelligence software: It makes use of non

numerical algorithms to solve complex problems that are

not amenable to computation or straightforward analysis.

Expert systems, also called knowledge-based systems,

pattern recognition (image and voice), artificial neural

networks, theorem proving, and game playing are

representative of applications within this category.

53

1.4 SOFTWARE CRISIS

❖Whether we call it a software crisis or affliction, the term

alludes to a set of problems that are encountered in the

development of computer software. The problems are not

limited to software that “doesn’t function properly”.

Rather, the affliction encompasses problems associated

with how we develop software, how we support a growing

volume of existing software, and how we can expect to keep

pace with growing demand for more software.

54

1.5 THE ATTRIBUTES OF GOOD

SOFTWARE
The specific set of attributes which you might expect from a software system

obviously depends on its application :

 1- Maintainability: software should be written in such a way that it may evolve
to meet the changing needs of customer.

 2- Dependability: software dependability has a range of characteristics,
including reliability, security and safety. Dependable software should not cause
physical or economic damage in the event of system failure.

Dependability can be achieved in three ways:

Error-free software development.

• Develop exceptional software that enables software to perform work.

Detecting errors.

55

3- Efficiency: software should not make wasteful use of

system resources, such as memory and processor cycles.

Therefore efficiency includes responsiveness, processing

time, memory utilization etc.

 4- Usability: software must be usable, without under effort

by the type of user for whom it is designed. This means

that it should have an appropriate user interface and

adequate documentation.

56

1.6 SOFTWARE ENGINEERING DEFINITION

Software engineering is an engineering discipline which is

concerned with all aspects of software production from the

early stages of system specification to maintaining the

system after it has gone into use.

software engineering is the application of principles used in

the field of engineering, which usually deals with physical

systems, to the design, development, testing, deployment

and management of software systems.

57

 What is The Deference Between Software
Engineering and Computer Science?

❖ Computer science is concerned with theory , software
engineering is concerned with the practicalities of
developing useful software.

❖ Computer science is a discipline that involves the design
and understanding of computers and computational
processes. It is a broad scientific topic. It includes the study
of how data is processed, the security of networks,
organizing databases, Software Engineering is a process of
analyzing user requirements and then designing, building,
and testing software application which will satisfy those
requirements.

58

Figure (3) The relationship between computer science

and software engineering 59

1.7 THE CHARACTERISTICS OF SOFTWARE

ENGINEER

1- Good programmer and fluent in one or more

programming language.

2- Well versed data structure and approaches.

3- Familiar with several designs approaches.

4- Be able to translate vague (not clear) requirements and

desires into precise specification.

5- Be able to converse with the user of the system in terms of

application not in “computer”.

6- Able to a build a model. The model is used to answer

questions about the system behavior and its performance.

7- Communication skills and interpersonal skills.

60

1.9 THE GOALS OF SOFTWARE ENGINEERING

❖ To produce software that is absolutely correct.

❖ To produce software with minimum effort.

❖ To produce software at the lowest possible cost.

❖ To produce software in the least possible time.

❖ To produce software that is easily maintained and

modified.

❖ To maximize the profitability of the software production

effort.

61

62

Software Engineering

LEC.10

جامعة ذي قار

كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

2-Entity relationship diagram (ERD)

➢An Entity Relationship (ER) Diagram is a type of

flowchart that illustrates how “entities” such as

people, objects or concepts relate to each other within

a system. ER Diagrams are most often used to design

or debug relational databases in the fields of software

engineering, business information systems, education

and research. Also known as ERDs or ER Models,

they use a defined set of symbols such as rectangles,

diamonds, ovals and connecting lines to depict the

interconnectedness of entities, relationships and their

attributes.

64

• The data model consists of three interrelated pieces of

information:

• The Entity:, the attributes that describe the data object and the

relationships that connect data objects to one another.

1. Entity: important individual thing, object, concept in the

real world of interest (e.g.the person called John, my red car,

. . .)

65

2-Attributes

• Attributes define the properties of a data object and take on

one of three different characteristics. They can be used to

• (1) name an instance of the entity.

• (2) describe the instance.

• (3) make reference to another instance in another table. In

addition, one or more of the attributes must be defined as an

identifier-that is, the identifier attribute becomes a "key" when

we want to find an instance of the data object.

66

3- Relationships

• Data objects are connected to one another in different ways.

Consider two data objects, book and bookstore. These objects

can be represented using the simple notation illustrated in

Figure (1). A connection is established between book and

bookstore because the two objects are related. But what are the

relationships? To determine the answer, we must understand

the role of books and bookstores within the context of the

software to be built. We can define a set of object/relationship

pairs that define the relevant relationships. For example,

• A bookstore orders books.

• A bookstore displays books.

• A bookstore stocks books.

• A bookstore sells books.

• A bookstore returns books.

67

Figure (1) Relationships

68

Creation of ERD

• The entity relationship diagram enables a software engineer to

fully specify the data objects that are input and output from

 a system, the attributes that define the properties of these

objects and their relationships. Like most elements of the

analysis model, the ERD is constructed in an iterative manner.

The following approach is taken:

 1. During requirements elicitation, customers are asked to list

the “things” that the application or business process addresses.

These “things” evolve into a list of input and output data

objects as well as external entities that produce or consume

information.

69

2. Wherever a connection exists, the analyst and the customer

create one or more object/relationship pairs.

3. The attributes of each entity are defined.

4. An entity relationship diagram is formalized and reviewed.

70

Tips for Effective ER Diagrams

• Make sure that each entity only appears once per diagram.

• Name every entity, relationship, and attribute on your diagram.

• Examine relationships between entities closely. Are they

necessary? Are there any relationships missing? Eliminate any

redundant relationships.

• Don't connect relationships to each other.

• Use colors to highlight important portions of your diagram.

71

Entity Relationship Diagram Examples

72

Entity Relationship Diagram Examples

73

74

SOFTWARE

ENGINEERING

LEC.11

جامعة ذي قار
رفةكلية التربية للعلوم الص
قسم علوم الحاسبات

. DATA FLOW DIAGRAM (DFD) :

Data refers to information, flow refers to

move, and diagram refers to a picture to

represent something. So, DFD is basically the

graphical representation of the flow of data

or information. It is a framework or pattern

of the data systems. It includes storing data,

data input, data output. It is describes as the

process of taking the data as input, storing

the data, giving the data as output. It

describes the path of data that completes

the process.

TYPES OF DFD :

TYPES OF DFD

 Logical data flow diagram mainly focuses on

the system process. It illustrates how data

flows in the system. Logical DFD is used in

various organizations for the smooth running

of system. Like in a Banking software system,

it is used to describe how data is moved from

one entity to another.

 Physical data flow diagram shows how the

data flow is actually implemented in the

system. Physical DFD is more specific and

close to implementation.

COMPONENTS OF DATA FLOW

DIAGRAM:
 Entities:

Entities include source and destination of the data. Entities
are represented by rectangle with their corresponding
names.

 Process:

The tasks performed on the data is known as process. Process
is represented by circle. Somewhere round edge rectangles
are also used to represent process.

 Data Storage:

Data storage includes the database of the system. It is
represented by rectangle with both smaller sides missing or
in other words within two parallel lines.

 Data Flow:

The movement of data in the system is known as data flow. It
is represented with the help of arrow. The tail of the arrow is
source and the head of the arrow is destination.

ADVANTAGES OF DFD

 it helps us to understand the functioning and the

limits of a system.

 It is a graphical representation which is very

easy to understand as it helps visualize contents.

 Data Flow Diagram represent detailed and well

explained diagram of system components.

 It is used as the part of system documentation

file.

 Data Flow Diagrams can be understood by both

technical or nontechnical person because they

are very easy to understand.

DISADVANTAGES OF DFD

 At times DFD can confuse the programmers

regarding the system.

Data Flow Diagram takes long time to be

generated, and many times due to this

reasons analysts are denied permission to

work on it.

EXAMPLE:

Software Engineering

LEC12

جامعة ذي قار

رفةكلية التربية للعلوم الص

قسم علوم الحاسبات

Software Design Definition
➢Design is a meaningful engineering representation of

something that is to be built. In the software engineering

context, design focuses on four major areas of concern:

 data, architecture, interfaces and components.

➢designer's goal is to produce a model or representation of an

entity that will later be built.

• The process by which the design model is developed is

described by belady:

 There are two major phases to any design process:

1. Diversification is the acquisition of a repertoire of

alternatives, the raw material of design: components,

component solutions, and knowledge, all contained in

catalogs, textbooks and the mind.
85

2. Convergence, the designer chooses and combines

 appropriate elements from this repertoire to meet the design
objectives, as stated in the requirements document and as agreed
to by the customer.

Activities of Software Design:-

• Software design sits at the technical kernel of software
engineering and is applied regardless of the software process
model that is used. Beginning once software requirements

 have been analyzed and specified, software design is the first of
three technical activities-design, code generation, and test-that are
required to build and verify the software. Each of the elements of
the analysis model provides information that is necessary to create
the four design models required for a complete specification of
design. 86

• The design task produces a data design, an architectural

design, an interface design and a component design.

• The flow of information during software design is

illustrated and design levels in Figure (1)

87

88
Figure (1) Translating the analysis model into a software

design

1- Data Design

• The data design transforms the information domain model

created during analysis into the data structures that will be

required to implement the software. The data objects and

relationships defined in the entity relationship diagram and the

detailed data content depicted in the data dictionary provide

the basis for the data design activity.

• Part of data design may occur in conjunction with the design

of software architecture.

• More detailed data design occurs as each software component

is designed.

89

2-Architectural Design

• The architectural design defines the relationship between

major structural elements of the software, the “design patterns”

that can be used to achieve the requirements that have been

defined for the system and the constraints that affect the way

in which architectural design patterns can be applied.

• The architectural design representation-the framework of

 a computer-based system-can be derived from the system

specification, the analysis model and the interaction of

subsystems defined within the analysis model.

90

3- Interface Design

• The interface design describes how the software communicates

within itself, with systems that interoperate with it and with

humans who use it.

• An interface implies a flow of information (e.g., data and/or

control) and a specific type of behavior.

• Therefore, data and control flow diagrams provide much of the

information required for interface design.

91

4- The component-level design

• The component-level design transforms structural elements of the
software architecture into a procedural description of software
components. Information obtained from the PSPEC, CSPEC and
STD serve as the basis for component design.

why is design so important?

 The importance of software design can be stated with a single word-
quality.

• Design is the place where quality is fostered in software
engineering.

• Design is the only way that we can accurately translate

 a customer's requirements into a finished software product or
system.

92

• Three characteristics that serve as a guide for the

evaluation of a good design:

• The design must implement all of the explicit requirements

contained in the analysis model

• The design must be a readable, understandable guide for those

who generate code and for those who test software.

• The design should provide a complete picture of the software,

addressing the data, functional and behavioral domains from

an implementation perspective.

93

94

جامعة ذي قار

رفةكلية التربية للعلوم الص

قسم علوم الحاسبات

Style describes a system category that encompasses:
 1- A set of components (e.g., a database, computational

modules) that perform a function required by a system;
 2- A set of connectors that enable “communication,
 coordinations and cooperation” among components.
 3- Constraints that define how components can be integrated to

form the system.
 4- Semantic models that enable a designer to understand the

overall properties of a system.

It can be represent by
◦ Data-centered architecture.
◦ Data flow architecture.
◦ Call and return architecture.
◦ Object oriented architecture.
◦ Layered architecture.

96

 A data store (e.g., a file or database) resides at the center of this
architecture and is accessed frequently by other components
that update, add, delete or otherwise modify data within the
store.

 Client software accesses a central repository which is in passive
state (in some cases). client software accesses the data
independent of any changes to the data or the actions of other
client software. So, in this case transform the repository into

 a “Blackboard”. A blackboard sends notification to subscribers
when data of interest changes, and is thus active.

 Existing components can be changed and new client
components can be added to the architecture without concern
about other clients. Data can be passed among clients using the
blackboard mechanism. So Client components independently
execute processes.

97

98

Data-Centered Architecture

 This architecture is applied when input data are to be
transformed through a series of computational or manipulative
components into output data.

 A pipe and filter pattern has a set of components, called filters,
connected by pipes that transmit data from one component to
the next.

 Each filter works independently (i.e. upstream, downstream)
and is designed to expect data input of a certain form, and
produces data output (to the next filter) of a specified form.

 the filter does not require knowledge of the working of its
neighboring filters. If the data flow degenerates into a single
line of transforms, it is termed batch sequential.

99

10

0

Data Flow Architecture

Pipes and filters

Batch Sequential

Architecture style enables a software designer to achieve
 a program structure that is relatively easy to modify and scale.

Two sub-styles exist within this category:
 1- Main/sub program architecture:

 Program structure decomposes function into a control
 hierarchy where a “main” program invokes a number of
 program components, which in turn may invoke still other
 components.

 2- Remote procedure Call architecture:

 The components of a main program/subprogram architecture
 are distributed across multiple computers on a network.

10

1

10

2

Call and Return Architecture

 The object-oriented paradigm, like the abstract data type

paradigm from which it evolved, emphasizes the bundling of

data and methods to manipulate and access that data (Public

Interface).

 Components of a system summarize data and the operations

that must be applied to manipulate the data. Communication

and coordination between components is accomplished via

message passing.

10

3

10

4

Object-Oriented Architecture

 A number of different layers are defined, each accomplishing

operations that progressively become closer to the machine

instruction set.

 At the outer layer, components examine user interface

operations. At the inner layer, components examine operating

system interfacing. Intermediate layers provide utility services

and application software functions.

10

5

10

6

Layered Architecture

Evaluation criteria can be applied during early design

reviews:

 1- The length and complexity of the written specification of the

system and its interface provide an indication of the amount

of learning required by users of the system.

 2- The number of user tasks specified and the average number

of actions per task provide an indication of interaction time

and the overall efficiency of the system.

 3- The number of actions, tasks and system states indicated by

the design model imply the memory load on users of the

system.

 4- Interface style, help facilities, and error handling protocol

provide a general indication of the complexity of the

interface and the degree to which it will be accepted by the

user.
10

7

10

8

جامعة ذي قار

كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

 Revisit the Software Life Cycle

 Classical Life Cycle or (Linear Sequential Software, Process

Model or Waterfall model).

11

0

❖ Two objectives verification and validation.

❖ To uncover errors in the software before delivery to the client,

this is called verification.

❖ Verify that the program is working.

❖ To ascertain that the software meet its requirement

specification, this is called Validation.

❖ Validate that the software meets its requirements.

11

1

2- Why Testing?

3- What Testing?

 At a lower level, testing involves designing a series of “TEST

CASES” or (“TEST SUITE”) to uncover errors and validate

conformance to requirements.

 At a higher level, testing involves formulating a test plan and

test strategy for the execution of the testing process.

11

2

11

3

4 -Work Products or (Deliverables) of Testing Stage

❖ Test Plan (Test Strategies).

❖ Test Report (includes Test Cases, Test Data, etc..).

5- Testing is Important

❖ “Testing is as important, if not more important than coding“.

 Your clients will not accept programs that are full of bugs, or

 worse still, don't meet the requirements.

11

4

❖ Example on Testing

❖ Requirement:

 Write a program to assign an alphabetic grade to raw marks as

follows:

11

5

❖ Program without Testing

11

6

❖ This code can compile and run (Compiler only catches syntax

errors, not semantics errors or logical errors).

❖ Is the program working? (May be!) (Verification).

❖ Is the program correct? Does the program meet its

specification? (NO!) (Validation)

❖ Is the program efficient? (This is an issue on Software Quality

Assurance (SQA), not testing-There are 10 comparisons in the

code, many of them are redundant!).

11

7

❖ Test Cases

❖ To verify and validate the program, we design “a series of test

cases”. Each test case contains a specific input and the

expected output. For examples:

11

8

❖ How many test cases is “necessary and sufficient”? (101)

❖ How about numbers like 200 or 155? (Countable Infinity)

11

9

6- What Testing Shows?

12

0

7- Testing Stage of the Software Process
 The goal of testing is to “design a series of test cases” that has

“a high likelihood of finding errors”.

 Design test cases systematically by “applying engineering

principles and methods”.

12

1

8- Testing Principles
 1. All tests should be traceable to customer requirements - to

ensure that the software meets its intended use.

 2. Tests should be planned long before testing begins -write

tests first, before the coding.

 3. Testing should begin “in the small” and progress toward

testing “in the large” - perform unit tests, then integration

tests, then validation test, and then system tests.

 4. The “80-20 rule” applied - 80% of the errors are located in

20% of the software modules, isolate them and test them

thoroughly.

 5. To be more effective, testing should be conducted by an

independent third -party testing specialist (ITG or Independent

Testing Group).

 6. Exhaustive test is not possible.

12

2

12

3

9- Who tests the system?

❖ During the early stages of testing, the developer performs the

tests. As the testing progresses, independent test specialist may

involved.

❖ “Open-source” software like Linux, Java, Apache are known to

be more secure and less buggy because many independent parties

have “tested” the source code.

12

4

Testing Types

1-Manual Testing::

This type includes the testing of the Software
manually i.e. without using any automated tool or
any script. In this type the tester takes over the
role of an end user and test the Software to
identify any un-expected behavior or bug. There
are different stages for manual testing like unit
testing, Integration testing, System testing and
User Acceptance testing

.

2-Automation Testing::

Automation testing which is also known as

“Test Automation”, is when the tester writes

scripts and uses another software to test the

software. This process involves automation of

a manual process. Automation Testing is used

to re-run the test scenarios that were
performed manually, quickly and repeatedly

Testing Methods:

1-Black Box Testing ::

The technique of testing without having any

knowledge of the interior workings of

the application is Black Box testing. The tester is

oblivious to the system architecture and does not

have access to the source code. Typically, when

performing a black box test, a tester will interact with

the system’s user interface by providing inputs and

examining outputs without knowing how and where

the inputs are worked upon.

Disadvantages:

1- Limited Coverage since only a selected

number of test scenarios are actually

performed.

2- Inefficient testing, due to the fact that the

tester only has limited knowledge

about an application.

3- Blind Coverage, since the tester cannot target

specific code segments or error prone areas.
4-The test cases are difficult to design.

2-White Box Testing::

White box testing is the detailed investigation of internal
logic and structure of the code.

White box testing is also called glass testing or open box
testing. In order to perform white box testing on an
application, the tester needs to possess knowledge of the
internal working of the code. The tester needs to have a
look inside the source code and find out which unit/chunk
of the code is behaving inappropriately.

Advantages:

As the tester has knowledge of the source code, it becomes
very easy to find out which type of data can help in testing the
application effectively.

1- It helps in optimizing the code.

2-Extra lines of code can be removed which can bring in
hidden defects.

3-Due to the tester's knowledge about the code, maximum
coverage is attained during test scenario writing.

Disadvantages:

1- Due to the fact that a skilled tester is
needed to perform white box testing, the costs
are increased.

2-Sometimes it is impossible to look into every
nook and corner to find out hidden errors that
may create problems as many paths will go
untested.

3- It is difficult to maintain white box testing as
the use of specialized tools like code analyzers
and debugging tools are required.

3-Grey Box Testing::
Grey Box testing is a technique to test the application
with limited knowledge of the internal workings of an
application. In software testing, the term “the more
you know the better” carries a lot of weight when
testing an application. Mastering the domain of a
system always gives the tester an edge over someone
with limited domain knowledge. Unlike black box
testing, where the tester only tests the application’s
user interface, in grey box testing, the tester has
access to design documents and the database. Having
this knowledge, the tester is able to better prepare
test data and test scenarios when making the test
plan.

Advantages:

 1-Offers combined benefits of black box and
white box testing wherever possible.

 2- Grey box testers don’t rely on the source
code; instead they rely on interface definition
and functional specifications.

 3- Based on the limited information available,
a grey box tester can design excellent test
scenarios especially around communication
protocols and data type handling.

 4-The test is done from the point of view of
the user and not the designer.

 Disadvantages:

1. Since the access to source code is not
available, the ability to go over the code and
test coverage is limited.

2. The tests can be redundant if the software
designer has already run a test case.

3. Testing every possible input stream is
unrealistic because it would take an
unreasonable amount of time; therefore,
many program paths will go untested.

Levels of Testing

Levels of testing include the different methodologies
that can be used while conducting Software Testing.
Following are the main levels of Software Testing:

 Functional Testing.

1. Unit Testing

2. Integration Testing

3. System Testing

4. Acceptance Testing

5. Regression testing

 Non- functional Testing.

The application is tested by providing input and then the results

are examined that need to conform to the functionality it was

intended for. Functional Testing of the software is conducted on a

complete, integrated system to evaluate the system's compliance

with its specified requirements. There are five steps that are

involved when testing an application for functionality.

 Step 1 - The determination of the functionality that the intended

application is meant to perform.

Step 2- The creation of test data based on the specifications of the

application.

Step 3 - The output based on the test data and the specifications

of the

application.

 Step 4 - The writing of Test Scenarios and the execution of test

cases.

 Steps 5 - The comparison of actual and expected results based on
the executed test cases.

1-Unit Testing

A unit is smallest testable piece of software

– can be compiled, linked, loaded

–functions/procedures, classes, interfaces

– normally done by programmer

– Test cases written after coding

2- Integration testing

• Test for correct interaction between

system units

 systems ‐ built by merging existing

libraries

 modules coded by different people

 Mainly tests the interfaces among units

 Bottom up integration testing

 Top down integration testing

3- System Testing

 Done by the test team

 Test of overall interaction of components

 Find disparities between implementation

and specification

 Usually where most resources go to

Involves – load, performance, reliability

and security testing

4- Acceptance Testing

 • Demonstrates satisfaction of user

 • Users are essential part of process

 • Usually merged with System Testing

 • Done by test team and customer

 • Done in simulated environment/real
environment

5- Regression Testing

•The intent of Regression testing is to ensure

that a change, such as a bug fix did not result in

another fault being uncovered in the

application.

 On going process throughout testing

lifecycle

 New bug‐fix breaks previously tested units?

 Perform regression test whenever program

changes

Non-Functional Testing

 Non-Functional Testing is defined as a type of
Software testing to check non-functional aspects
(performance, usability, reliability, etc) of a software
application. It is designed to test the readiness of a
system as per nonfunctional parameters which are
never addressed by functional testing.

 An excellent example of non-functional test would be
to check how many people can simultaneously login
into a software.

 Non-functional testing is equally important as
functional testing and affects client satisfaction.

جامعة ذي قار

كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

Software Quality Assurance
◼ What is Quality?

Quality – developed product meets it’s specification

Problems:

• Development organization has requirements exceeding customer's

specifications (added cost of product development)

• Certain quality characteristics can not be specified in

unambiguous terms (i.e. maintainability)

• Even if the product conforms to it’s specifications, users may

not consider it to be a quality product (because users may not be

involved in the development of the requirements)

Software Quality Attributes

◼ Safety

◼ Security

◼ Reliability

◼ Resilience

◼ Robustness

◼ Understandability

◼ Testability

◼ Adaptability

◼ Modularity

◼ Complexity

◼ Portability

◼ Usability

◼ Reusability

◼ Efficiency

◼ Learnability

Software Quality Assurance
◼ To ensure quality in a software product, an organization must have a

three-prong approach to quality management:

 Organization-wide policies, procedures and standards must be

established.

 Project-specific policies, procedures and standards must be

tailored from the organization-wide templates.

 Quality must be controlled; that is, the organization must ensure

that the appropriate procedures are followed for each project

◼ Standards exist to help an organization draft an appropriate software

quality assurance plan.

 ISO 9000-3

 ANSI/IEEE standards

◼ External entities can be contracted to verify that an organization is

standard-compliant.

159

What is SQA:

SQA includes all 4 elements…

n Software Quality Assurance – establishment of network of

organizational procedures and standards leading to high-

quality software

2. Software Quality Planning – selection of appropriate

procedures and standards from this framework and adaptation

of these to specific software project

3. Software Quality Control – definition and enactment of

processes that ensure that project quality procedures and

standards are being followed by the software development

team

4. Software Quality Metrics – collecting and analyzing quality

data to predict and control quality of the software product

being developed

SQA Activities
◼ Applying technical methods

 To help the analyst achieve a high quality specification and a high quality

design

◼ Conducting formal technical reviews

 A stylized meeting conducted by technical staff with the sole purpose of

uncovering quality problems

◼ Testing Software

 A series of test case design methods that help ensure effective error detection

◼ Enforcing standards

◼ Controlling change

 Applied during software development and maintenance

◼ Measurement

 Track software quality and asses the ability of methodological and procedural

changes to improve software quality

◼ Record keeping and reporting

 Provide procedures for the collection and dissemination of SQA information

Advantages of SQA

◼ Software will have fewer latent defects, resulting

in reduced effort and time spent during testing

and maintenance

◼ Higher reliability will result in greater customer

satisfaction

◼ Maintenance costs can be reduced

◼ Overall life cycle cost of software is reduced

Disadvantages of SQA

◼ It is difficult to institute in small organizations,
where available resources to perform necessary
activities are not available

◼ It represents cultural change - and change is
never easy

◼ It requires the expenditure of dollars that would
not otherwise be explicitly budgeted to software
engineering or QA

Process and Product Quality

جامعة ذي قار
كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

chapter two

Software Development Models

 Topics

 2.1 The Software Lifecycle

 2.2 Software Development

 2.3 What is a Software Process ?

 2.4 Software Engineering - A Layered Technology

 2.5 Software Process Models

 2.5.1 The Waterfall Model

 2.5.2 The Prototype Model

 2.5.3 Evolutionary Software Process Models

 2.5.3.a The Incremental Model

 2.5.3.b The Spiral Model

 2.6 Component - Based Development

165

2.1 The Software Lifecycle

 Each software product proceeds to a number of distinct

stages, these are:

 1. Requirements Engineering

 2. Software Design

 3. Software Construction

 4. Validation and Verification

 5. Software Testing

 6. Software Deployment

 7. Software Maintenance

 Depending the software process used for the development of

the software product, these stages may occur in different

orders, or frequency.

166

2.1.1. Requirements Engineering
 (requirement analysis and definition by using engineering

approach)

 Requirements engineering is the interface between customers
and developers on a software project. Requirements should
make explicit the ideas of the customer about the prospective
system.

2.1.2. Software Design
 The designers converts the logical software requirements from

stage 1 into a technical software design by describe the
software in such a way that programmers can write line of
code that implement what the requirements specify.

167

2.1.3. Software Construction

 Software construction is concerned with implementing the

software design by means of programs in one or more

programming languages and setting up a build management

system for compiling and linking the programs.

 This stage content several steps, these are :

 a. Software Reuse

 b. Security and Reliability

 c. Software Documentation

 d. Coding Standards

168

a. Software Reuse

The goal of software engineering is to achieve many features with

little effort and few defects. Software reuse is believed to play an

important role in achieving this goal by encapsulating effort in units

of source code, which can be reused in other projects.

169

 b. Security and Reliability

 Software must be dependable by making it reliable (software should
work very well under any environments), secure and safety (by
verifying from user authentication to using any system).

 c. Software Documentation

 User documentation?

 Technical documentation?

 Documentation generation?

 d. Coding Standards

 Coding standards are important to ensure portability and make
code maintainable by others than the original developer.

170

2.1.4. Validation and Verification

 Validation is the process of checking whether the software product

is up to the mark or in other words product has high level

requirements.

 Verification is the process of checking that a software achieves its

goal without any bugs. It is the process to ensure whether the product

that is developed is right or not.

171

V_Model

172

2.1.5. Software Testing :

Software Testing is a method to check whether the

actual software product matches expected

requirements and to ensure that software product

Defect free

 The purpose of software testing is to identify

errors, gaps or missing requirements in contrast to

actual requirements.

173

2.1.5 Software Deployment

 After development, software should be put to use. That is, it

should be released and made available to users, who can then

download, install and activate it. These activities are captured

under the common term software deployment.

 The following deployment activities make up the software

deployment process:

 Release , Packaging ,Transfer ,Installation

 Configuration , Activation

 De-activation ,Update , Adapt , De-installation , De-release

174

 2.1.6 Software Maintenance

 As software evolves after its first release, software

maintenance is needed to improve it, repair defects, and to

extend it, and add new functionality.

175

2.2 Software development

 Three phases to develop the software

 1- definition

 2- design

 3- maintenance

 1- Definition

 1- What information to be processed?

 2- What design constrains exist?

 3- What function and performance desired?

 4- What interfaces are desired?

 5- What validation criteria are required?

 6- What is modeling?

176

2- Design

 1- How data structures to be designed.

 2- How procedural details to be implemented.

 3- How design to be translated into language.

 4- How testing is performed.

3- Maintenance

 1- error

 2- Adaptation.

 3- Modification

177

2.3 What is a Software Process ?

 These set of activities whose goal is the development or

evolution of software ,Generic activities in all software

processes are:

1- Specification: the process of establishing what services are

required and identifying the constraints (e.g. cost and time) on

the operation of the system and its development.

2- Development: (design and implementation): the process of

converting the system specification into an executable system.

3- Validation: Where the software is checked to ensure that it

is what the customer required.

4- Evolution: Where the software is modified to adapt it to

changing customer and market requirement.

178

2.4 Software Engineering - A Layered

 Technology

 Software engineering is a layered technology figure (2.1).

 These layers are:

 1- A quality focus: any engineering approach (including

software engineering) must rest on an organizational

commitment to quality. Total quality management and similar

philosophies foster a continuous process improvement culture,

and it is this culture that ultimately leads to the development

of increasingly more mature approaches to software

engineering. The bedrock that supports software

engineering is a focus on quality.

179

2- Process: the foundation for software engineering is the

process layer. Software engineering process is the glue that

holds the technology layers together and enables rational and

timely development of computer software. Process defines

 a framework for a set of key process areas that must be

established for effective delivery of software engineering

technology.

 3- Methods: software engineering methods provide the

technical for building software methods encompass a broad

array of tasks that include requirements analysis, design,

program construction, testing and maintenance. Software

engineering methods rely on a set of basic principles that

govern each area of the technology and include modeling

activities and other descriptive techniques.

180

4- Tools: software engineering tools provide automated or semi-

automated support for the process and the methods. When

tools are integrated so that information created by one tool can

be used by another, a system for the support of software

development, called computer - aided software engineering

(CASE), is established. CASE combines software, hardware,

and software engineering database (repository containing

important information about analysis, design program

construction and testing) to create a software engineering

environment.

181

182

183

SOFTWARE

ENGINEERING

LEC5

جامعة ذي قار

كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

2.5.2 The Prototype Model
185

The prototyping model is a systems development method in which a

prototype is built, tested and then reworked as necessary until an

acceptable outcome is achieved from which the complete system or

product can be developed.

The Prototyping Model should be used when:

❖ the requirements of the product are not clearly understood or are

unstable.

❖ if requirements are changing quickly

Approaches for this model
186

 1. Rapid Throwaway Prototyping –This technique offers a useful
method of exploring ideas and getting customer feedback for each
of them. In this method, a developed prototype need not necessarily
be a part of the ultimately accepted prototype. Customer feedback
helps in preventing unnecessary design faults and hence, the final
prototype developed is of a better quality.

 2. Evolutionary Prototyping –

In this method, the prototype developed initially is incrementally
refined on the basis of customer feedback till it finally gets accepted.
In comparison to Rapid Throwaway Prototyping, it offers a better
approach which saves time as well as effort. This is because
developing a prototype from scratch for every iteration of the process
can sometimes be very frustrating for the developers.

187

Steps of Prototype Model:

188

 Requirement Gathering and Analyst

 Quick Decision

 Build a Prototype

 Assessment or User Evaluation

 Prototype Refinement

 Engineer Product

The stages of the prototyping
model:

1) Step 1: Requirements gathering and analysis

A prototyping model starts with requirement analysis. In this phase,

the requirements of the system are defined in detail. During the

process, the users of the system are interviewed to know what is

their expectation from the system.

Step 2: Quick design

The second phase is a preliminary design or a quick design. In this

stage, a simple design of the system is created. However, it is

not a complete design. It gives a brief idea of the system to the

user. The quick design helps in developing the prototype.

189

. Step 3: Build a Prototype

In this phase, an actual prototype is designed based on the

information gathered from quick design. It is a small working

model of the required system.

Step 4: Initial user evaluation

In this stage, the proposed system is presented to the client for

an initial evaluation. It helps to find out the strength and

weakness of the working model. Comment and suggestion are

collected from the customer and provided to the developer.

190

Step 5: Refining prototype

If the user is not happy with the current prototype, you need to

refine the prototype according to the user’s feedback and

suggestions.

This phase will not over until all the requirements specified by

the user are met. Once the user is satisfied with the developed

prototype, a final system is developed based on the approved

final prototype.

Step 6: Implement Product and Maintain

Once the final system is developed based on the final prototype,

it is thoroughly tested and deployed to production. The system

undergoes routine maintenance for minimizing downtime and

prevent large-scale failures.
191

Advantages of using Prototype Model:
:• This model is flexible in design.

• It is easy to detect errors.

• We can find missing functionality easily.

• There is scope of refinement, it means new requirements can be

easily accommodated.

• It can be reused by the developer for more complicated projects in

the future.

• It ensures a greater level of customer satisfaction and comfort.

• It is ideal for online system.

• It helps developers and users both understand the system better.

• Integration requirements are very well understood and deployment

channels are decided at a very early stage.

• It can actively involve users in the development phase.
192

Disadvantages of using Prototype
Model :

• 1- An unstable/badly implemented prototype often becomes the

final product.

• 2- Require extensive customer collaboration

• Costs customer money

• Needs committed customer

• Difficult to finish if customer withdraw

• May be too customer specific, no broad market

• 3- Difficult to know how long the project will last.

• 4- Easy to fall back into the code and fix without proper

requirement analysis, design, customer evaluation, and feedback.

• 5- Prototyping tools are expensive.

• 6- Special tools & techniques are required to build a prototype.

• 7- It is a time-consuming process.

193

194

:Conclusion

• Prototyping helps for developing user interfaces,

• high technology software and systems with
complex algorithms and interfaces.

195

SOFTWARE

ENGINEERING

LEC 6,7

جامعة ذي قار

كلية التربية للعلوم الصرفة

قسم علوم الحاسبات

2.5.3 EVOLUTIONARY SOFTWARE PROCESS MODELS

 Evolutionary models are iterative. They are characterized in

 a manner that enables software engineers to develop

increasingly more complete versions of the software.

 There are several types of that model, these are:

 a. The Incremental Model

 b. The Spiral Model

197

2.5.3.A. THE INCREMENTAL MODEL
 In incremental model, the software is divided into separate

modules(components)/increments and each of these modules has a separate

set of SDLC activities including requirements gathering, analysis, design,

coding, Testing, deployment, and maintenance.

 When any component is ready, then the component is delivered to the

customer and when remaining components become ready than delivered to

the customer one by one by integrating new components with old once..

 For example, word-processing software developed using the incremental

paradigm might:

 1) Deliver basic file management, editing, and document production

functions in the first increment.

 2) More sophisticated editing and document production capabilities in the

second increment.

 3) Spelling and grammar checking in the third increment.

 4) Advanced page layout capability in the fourth increment.
198

EXAMPLE
 In this daily life example, we want to draw a picture, first, we

draw the first part of the picture as shown in increment 1,

Similarly after completing the first part of the picture we have

to add one another part of the picture labeled as increment 2

in the above picture. Similarly, we complete this picture in

four increments

199

200

THE PHASES OF INCREMENTAL MODEL ARE :

1. Requirement analysis: In the first phase of the

incremental model, the product analysis expertise identifies the

requirements. And the system functional requirements are

understood by the requirement analysis team. To develop the

software under the incremental model, this phase performs a

crucial role.

2. Design & Development: In this phase of the Incremental

model of SDLC, the design of the system functionality and the

development method are finished with success. When software

develops new practicality, the incremental model uses style

and development phase.

201

CONT.

 3. Testing: In the incremental model, the testing

phase checks the performance of each existing

function as well as additional functionality. In the

testing phase, the various methods are used to

test the behavior of each task.

 4. Implementation: Implementation phase

enables the coding phase of the development

system. It involves the final coding that design in

the designing and development phase and tests

the functionality in the testing phase. After

completion of this phase, the number of the

product working is enhanced and upgraded up to

the final system product
202

WHEN WE USE THE INCREMENTAL MODEL?

A. A project has a lengthy development schedule

B. When Software team are not very well skilled

or trained.

C. When the customer demands a quick release of

the product.

D. You can develop prioritized requirements first.

E. Requirements of the system are clearly

understood

203

THE ADVANTAGES OF AN INCREMENTAL

MODEL.

A. Customer feedback is received after the delivery of

each component.

B. Risk of requirement changes is reduced

C. More flexible

D. Easy to test and debug

E. Give quick results

204

THE DISADVANTAGES OF AN INCREMENTAL

MODEL?

A. Needs a proper plan to integrate the components

B. Needs a proper design to integrate the components

C. More expansive as compared to the waterfall model.

D. Problems might cause due to system architecture

E. Total Cost is high.

205

2.5.3.B. THE SPIRAL MODEL

 The spiral model is a systems development lifecycle (SDLC)

method used for risk management that combines the iterative

development process model with elements of the Waterfall

model. The spiral model is used by software engineers and is

favored for large, expensive and complicated projects.

 the spiral model looks like a coil with many loops. The number

of loops varies based on each project and is often designated by

the project manager. Each loop of the spiral is a phase in the

software development process.

206

207

Figure (2.5) The Spiral model

A spiral model is divided into a number of

framework activities, also called task regions.

Figure 2.5 depicts a spiral model that contains six

task regions:

 1. Customer communication-tasks required to

establish effective communication between developer

and customer.

 2. Planning-tasks required to define resources,

timelines, and other project-related information.

3. Risk analysis-tasks required to assess both technical

and management risks.

208

CONT.

 4. Engineering-tasks required to build one or

more representations of the application.

 5. Construction and release-tasks required to

construct, test, install and provide user support

(e.g., documentation and training).

 6. Customer evaluation-tasks required to

obtain customer feedback based on evaluation of

the software representations created during the

engineering stage and implemented during the

installation stage.

209

ADVANTAGE OF SPIRAL MODEL

1-Changing requirements can be

accommodated.

2-Allows for extensive use of prototypes

3-Requirements can be captured more

accurately.

4-Users see the system early.

5-Development can be divided into smaller

parts and more risky parts can be

6-developed earlier which helps better risk

management.
210

DISADVANTAGE OF SPIRAL MODEL

1-Management is more complex.

2-End of project may not be known early.

3-Not suitable for small or low risk projects

and could be expensive for small projects.

4-Process is complex

5-requires excessive documentation.

211

212
Figure (2.6) The Component – Based Development

213

3.1 Introduction

 3.2 Requirements Analysis

 3.3 Software Requirements Analysis Phases

 3.4 Software requirements elicitation

 3.4.1 Facilitated Action Specification Techniques (FAST)

 3.4.2 Quality Function Deployment (QFD)

3.5 Analysis Principles

 3.5.1 Information Domain

 3.5.2 Modeling

 3.5.3 Partitioning

 3.5.4 Software Requirements Views

 3.6 Software Prototyping

 3.6.1 Prototyping Methods and Tools

 3.7 Specification Principles
21

5

 After system engineering is completed, software engineers

need to look at the role of software in the proposed system.

Software requirements analysis is necessary to avoid creating

software product that fails to meet the customer's needs. Data,

functional and behavioral requirements are elicited from the

customer and refined to create specification that can be used to

design the system. Software requirements work products must

be reviewed for clarity, completeness and consistency.

21

6

 Requirement Analysis, also known as Requirement

Engineering, is the process of defining user

expectations for a new

 software being built or modified.

21

7

21

8

Software Requirements Analysis

 · Identify the "customer" and work

 Together to negotiate "product –level"

 · Build an analysis model

 - Focus on data

 - define function

 - represent behavior

 · Prototype areas of uncertainty

 · Develop a specification that will guide design

 · Conduct formal technical reviews.

·Problem recognition

· Evaluation and synthesis (focus is on what not how)

· Modeling

· Specification

· Review

21

9

 Customer meetings are the most commonly used technique.

 Use context free question to find out customers goal and

benefits, identify stakeholders, gain understanding of problem,

determine, customer reactions to proposed solution, and assess

meeting effectiveness.

 If many users are involved, be certain that a representative

cross section of users is interviewed.

22

0

1. Meeting held at neutral site, attended by both software

engineers and customers.

2. Rules established for preparation and participation.

3. Agenda suggested to cover important points and to allow for

brainstorming.

4. Meeting controlled by facilitator (customer, developer or

outsider).

5. Definition mechanism (flip charts, stickers, electronic device,

etc.) is used.

6. Goal is to identify problem, propose elements of solution,

negotiate different approaches, and specify a preliminary set of

solution requirements.

22

1

1. Translates customer needs into technical software requirements.

2. Uses customer interviews, observation, surveys, and historical

data for requirements gathering.

3. Customer voice table(contains summary of requirements).

4. Normal requirements (must be present in product for customer to

be satisfied).

5. Expected requirement (things like ease of use or reliability of

operation, that customer assumes will be present in

 a professionally developed product without having to request

them explicitly).

6. Exciting requirements (features that go beyond the customers

expectations and prove to very satisfying when they are present).

22

2

7. Function deployment (used during customer meeting to

determine the value of each function required for system).

8. Information deployment (identifies data objects and events

produced and consumed by the system).

9.Task deployment(examines the behavior of product within in

environment).

10.Value analysis (used to determine the relative priority of

requirements during function , information, and task

deployment).

22

3

1. The information domain of the problem must be represented

and understood.

2. The functions that the software is to perform must be defined.

3. Software behavior must be represented.

4. Models depicting information, function and behavior most be

partitioned in a hierarchal manner detail.

5. The analysis process should move from the essential

information toward implementation details.

22

4

22

5

 Encompasses all data objects that contain numbers, text,

images, audio or video.

 Information content or data model (shows the relationships

among the data and control objects that make up the system).

 Information flow(represents the manner in which data control

objects change as each moves through the system).

 Information structure (representations of the internal

organizations of various data and control items).

22

6

 Data Model (shows relationships among system objects).

 Function Model (description of the functions that enable the

transformation of system objects).

 Behavioral Model (manner in which software responds to

events from the outside world).

22

7

22

8

22

9

23

0

 Essential view- presents the functions to be accomplished and

the information to be processed without regard to

implementation.

 Implementation view- presents the real world manifestation of

processing functions and information structures.

 Avoid the temptation to move directly to the implementation

view, assuming that the essence of the problem is obvious.

23

1

 Throwaway prototyping (prototype only used as a

demonstration of product requirements, finished software is

engineered using another paradigm).

 Evolutionary prototyping (prototype is refined to build the

finished system).

 Customer resources must be committed to evaluation and

refinement of the prototype.

 Customer must be capable of making requirements decisions

in a timely manner.

23

2

 Fourth generation techniques (4 GT tools allow software

engineer to generate executable code quickly).

 Reusable software components (assembling prototype from a

set of existing software components).

 Formal specification and prototyping environments (can

interactively create executable programs from software

specification models).

23

3

 Separate functionality from implementation.

 Develop a behavioral model that describes functional

responses to all system stimuli.

 Define the environment in which the system operates and

indicate how the collection of agents will interact with it.

 Create a cognitive model rather than an implementation

model.

 Recognize that the specification must be extensible and

tolerant of incompleteness.

 Establish the content and structure of a specification so that it

can be changed easily.

23

4

23

5

	Slide 1: Software Engineering LEC13
	Slide 2: Modularity
	Slide 3
	Slide 4: Effective Modular Design
	Slide 5: 1- Functional Independence
	Slide 6
	Slide 7: 2- Cohesion
	Slide 8
	Slide 9
	Slide 10: 3 -Coupling
	Slide 11
	Slide 12
	Slide 13: Introduction to Object Oriented Design
	Slide 14
	Slide 15: Design For Object-Oriented Systems
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Software Engineering
	Slide 20: 2.5 Software Process Models:
	Slide 21: 2.5.1 The Waterfall Model:
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Waterfall Model Advantages:
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Software Engineering lec 9
	Slide 31: 4.1 The Analysis Model
	Slide 32
	Slide 33: 4.2 Concepts of Structure Analysis
	Slide 34: 4.3 Analysis Model Objectives
	Slide 35: 4.4 The Elements of Analysis Model
	Slide 36
	Slide 37: DDS should provide two sets of facilities:
	Slide 38: Benefits of a DDS:
	Slide 39: :DDS Disadvantages
	Slide 40
	Slide 41
	Slide 42: Software Engineering
	Slide 43: chapter one Introduction to Software Engineering
	Slide 44: 1.1 Software Definition
	Slide 45: 1.2 Software Characteristics
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: 1.3 Software Applications
	Slide 52
	Slide 53
	Slide 54: 1.4 Software Crisis
	Slide 55: 1.5 The Attributes of Good Software
	Slide 56
	Slide 57: 1.6 Software Engineering Definition
	Slide 58
	Slide 59
	Slide 60: 1.7 The Characteristics of Software Engineer
	Slide 61: 1.9 The Goals of Software Engineering
	Slide 62
	Slide 63: Software Engineering LEC.10
	Slide 64: 2-Entity relationship diagram (ERD)
	Slide 65
	Slide 66: 2-Attributes
	Slide 67: 3- Relationships
	Slide 68: Figure (1) Relationships
	Slide 69: Creation of ERD
	Slide 70
	Slide 71: Tips for Effective ER Diagrams
	Slide 72: Entity Relationship Diagram Examples
	Slide 73: Entity Relationship Diagram Examples
	Slide 74
	Slide 75: Software Engineering LEC.11
	Slide 76: . Data Flow Diagram (DFD) :
	Slide 77: Types of DFD :
	Slide 78: Types of DFD
	Slide 79: Components of Data Flow Diagram:
	Slide 80
	Slide 81: Advantages of DFD
	Slide 82: Disadvantages of DFD
	Slide 83: EXAMPLE:
	Slide 84: Software Engineering LEC12
	Slide 85: Software Design Definition
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 1- Data Design
	Slide 90: 2-Architectural Design
	Slide 91: 3- Interface Design
	Slide 92: 4- The component-level design
	Slide 93
	Slide 94
	Slide 95: Software Engineering LEC14
	Slide 96: Architectural Style
	Slide 97: Data-centered architecture
	Slide 98
	Slide 99: Data Flow Architecture
	Slide 100
	Slide 101: Call and Return Architecture
	Slide 102
	Slide 103: Object-Oriented Architecture
	Slide 104
	Slide 105: Layered Architecture
	Slide 106
	Slide 107
	Slide 108
	Slide 109: Software Engineering LEC.15
	Slide 110: 1 -Introduction
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125: Testing Types
	Slide 126: 2-Automation Testing::
	Slide 127: Testing Methods: 1-Black Box Testing :: The technique of testing without having any knowledge of the interior workings of the application is Black Box testing. The tester is oblivious to the system architecture and does not have access to the
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135: Levels of Testing
	Slide 136
	Slide 137: 1-Unit Testing
	Slide 138: 2- Integration testing
	Slide 139: 3- System Testing
	Slide 140: 4- Acceptance Testing
	Slide 141: 5- Regression Testing
	Slide 142: Non-Functional Testing
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155: Software Engineering lec. 17
	Slide 156: Software Quality Assurance
	Slide 157: Software Quality Attributes
	Slide 158: Software Quality Assurance
	Slide 159: What is SQA:
	Slide 160: SQA Activities
	Slide 161: Advantages of SQA
	Slide 162: Disadvantages of SQA
	Slide 163: Process and Product Quality
	Slide 164: Software Engineering
	Slide 165: chapter two Software Development Models
	Slide 166: 2.1 The Software Lifecycle
	Slide 167
	Slide 168: 2.1.3. Software Construction
	Slide 169: a. Software Reuse
	Slide 170
	Slide 171: 2.1.4. Validation and Verification
	Slide 172: V_Model
	Slide 173: 2.1.5. Software Testing :
	Slide 174: 2.1.5 Software Deployment
	Slide 175
	Slide 176: 2.2 Software development
	Slide 177
	Slide 178: 2.3 What is a Software Process ?
	Slide 179: 2.4 Software Engineering - A Layered Technology
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184: Software Engineering LEC5
	Slide 185: 2.5.2 The Prototype Model
	Slide 186: Approaches for this model
	Slide 187
	Slide 188: Steps of Prototype Model:
	Slide 189: The stages of the prototyping model:
	Slide 190
	Slide 191
	Slide 192: Advantages of using Prototype Model: :
	Slide 193: Disadvantages of using Prototype Model :
	Slide 194
	Slide 195: :Conclusion
	Slide 196: Software Engineering lec 6,7
	Slide 197: 2.5.3 Evolutionary Software Process Models
	Slide 198: 2.5.3.a. The Incremental Model
	Slide 199: Example
	Slide 200
	Slide 201: The phases of incremental model are :
	Slide 202: Cont.
	Slide 203: When we use the Incremental Model?
	Slide 204: the advantages of an incremental model.
	Slide 205: the disadvantages of an incremental model?
	Slide 206: 2.5.3.b. The Spiral Model
	Slide 207
	Slide 208
	Slide 209: Cont.
	Slide 210: Advantage of Spiral Model
	Slide 211: Disadvantage of Spiral Model
	Slide 212
	Slide 213
	Slide 214: Software Engineering
	Slide 215: chapter three Software Requirements
	Slide 216: 3.1 Introduction
	Slide 217: 3.2 Requirements Analysis
	Slide 218
	Slide 219: 3.3 Software Requirements Analysis Phases
	Slide 220: 3.4 Software requirements elicitation
	Slide 221: 3.4.1 Facilitated Action Specification Techniques (FAST)
	Slide 222: 3.4.2 Quality Function Deployment (QFD)
	Slide 223
	Slide 224: 3.5 Analysis Principles
	Slide 225
	Slide 226: 3.5.1 Information Domain
	Slide 227: 3.5.2 Modeling
	Slide 228
	Slide 229
	Slide 230
	Slide 231: 3.5.4 Software Requirements Views
	Slide 232: 3.6 Software Prototyping
	Slide 233: 3.6.1 Prototyping Methods and Tools
	Slide 234: 3.7 Specification Principles
	Slide 235

