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Definition: 

Let 𝑅 be a set of real number and " + " addition on 𝑅, ". " 

multipilication on 𝑅, then  

1- For any 𝑎, 𝑏 ∈ 𝑅, then 𝑎 + 𝑏 ∈ 𝑅 and 𝑎. 𝑏 ∈ 𝑅 

2-  For any 𝑎, 𝑏, 𝑐 ∈ 𝑅 then                                                           

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) and                           (𝑎. 𝑏). 𝑐 =

𝑎. (𝑏. 𝑐) 

3- There exists 0,1 ∈ 𝑅 such that                                             

𝑎 + 0 = 0 + 𝑎 = 𝑎 and   𝑎. 1. 𝑎 = 𝑎 

4- For any 𝑎 ∈ 𝑅 and 𝑎 ≠ 0 there exists 
1

𝑎
= 𝑎−1 ∈ 𝑅 and 

𝑎.
1

𝑎
=
1

𝑎
. 𝑎 = 1 

5- For any 𝑎 ∈ 𝑅, there exists −𝑎 ∈ 𝑅 such that 𝑎 + (−𝑎) =

(−𝑎) + 𝑎 = 0 

6- For any 𝑎, 𝑏, 𝑐 ∈ 𝑅 then                                                        

𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐 and                                                   

(𝑏 + 𝑐). 𝑎 = 𝑏. 𝑎 + 𝑐. 𝑎 

7-  For any 𝑎, 𝑏 ∈ 𝑅 then 𝑎 + 𝑏 = 𝑏 + 𝑎 and 𝑎. 𝑏 = 𝑏. 𝑎 

8- (𝛼 + 𝛽)𝑎 = 𝛼𝑎 + 𝛽𝑎 for any 𝑎 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝐹 

9- (𝛼. 𝛽)𝑎 = 𝛼. (𝛽. 𝑎) for any 𝑎 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝐹 

 

Hence (𝑅,+, . ) is a field and is said to be a field of real 

number 
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Definition: 

Let 𝑋 be a non-empty set and 𝐹 be a field then 𝑋 is said to be 

vector space over 𝐹 iff there exists two operations 

Addition 

+∶ 𝑋 × 𝑋 ⟶ 𝑋 and 

Scalar multiplication 

. ∶ 𝐹 × 𝑋 ⟶ 𝑋 between 𝑋 and 𝐹 this two operational satisfies 

conditions 

1-  For any 𝑎. 𝑏 ∈ 𝑋 then 𝑎 + 𝑏 ∈ 𝑋 

2- For any 𝑎. 𝑏 ∈ 𝑋 then 𝑎 + 𝑏 = 𝑏 + 𝑎 

3-  For any 𝑎. 𝑏. 𝑐 ∈ 𝑋 then                                                                              

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 

4- there exists 0 ∈ 𝑋 such that                                                             

𝑎 + 0 = 0 + 𝑎 = 𝑎  for any 𝑎 ∈ 𝑋 0 is called zero vector 

5- For any 𝑎 ∈ 𝑋 there exists −𝑎 ∈ 𝑋 such that 𝑎 + (−𝑎) =

(−𝑎) + 𝑎 = 0 

6- 𝜆𝑎 ∈ 𝑋 for any 𝜆 ∈ 𝐹, 𝑎 ∈ 𝑋 

7- 𝜆. (𝑎 + 𝑦) = 𝜆. 𝑎 + 𝜆. 𝑏,For any 𝑎, 𝑏 ∈ 𝑋, 𝜆 ∈ 𝐹 

 

 

Example:  

1- Let 𝑅 be a set of real number and let                                                                      

𝑉 = 𝑅𝑛 = { (𝑎1, 𝑎2, … , 𝑎𝑛)} and +,   . define on 𝑅𝑛 as 

follows:                                                                                       

let (𝑎1, 𝑎2, … , 𝑎𝑛) and (𝑏1, 𝑏2, … , 𝑏𝑛) ∈  𝑅
𝑛 then 
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(𝑎1, 𝑎2, … , 𝑎𝑛) +(𝑏1, 𝑏2, … , 𝑏𝑛) = (𝑎1 + 𝑏1, 𝑎2 +

𝑏2, … , 𝑎𝑛 + 𝑏𝑛) and let 𝜆 ∈ 𝑅,  (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝑅
𝑛 then, 

𝜆(𝑎1, 𝑎2, … , 𝑎𝑛) = (𝜆𝑎1, 𝜆𝑎2, … , 𝜆𝑎𝑛) show that 𝑉 be a 

vector space over a field 𝑅. 

2-  Let 𝑅 be a set of real number and let                                   

𝑉 = 𝑀𝑚×𝑛 = {𝐴, 𝐴 matrix over 𝑅} and + , .define on 

𝐴𝑚×𝑛 as follows                                                                             

𝐴 = [

𝑎11 𝑎12
𝑎21 𝑎22

⋯
𝑎1𝑛
𝑎2𝑛

⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

],                                                                                        

𝐵 = [

𝑏11 𝑏12
𝑏21 𝑏22

⋯
𝑏1𝑛
𝑏2𝑛

⋮ ⋱ ⋮
𝑏𝑚1 𝑏𝑚2 ⋯ 𝑏𝑚𝑛

]  such that                                           

𝐴 + 𝐵 [

𝑎11 + 𝑏11 𝑎12 + 𝑏12
𝑎21 + 𝑏21 𝑎22 + 𝑏22

⋯
𝑎1𝑛 + 𝑏1𝑛
𝑎2𝑛 + 𝑏2𝑛

⋮ ⋱ ⋮
𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 ⋯ 𝑎𝑚𝑛 + 𝑏𝑚𝑛

] 

and let 𝛼 ∈ 𝑅 then  𝛼𝐴 = [

𝛼𝑎11 𝛼𝑎12
𝛼𝑎21 𝛼𝑎22

⋯
𝛼𝑎1𝑛
𝛼𝑎2𝑛

⋮ ⋱ ⋮
𝛼𝑎𝑚1 𝛼𝑎𝑚2 ⋯ 𝛼𝑎𝑚𝑛

] 

show that 𝑉 vector space over 𝑅 

 

Theorem: 

If 𝑋 is a vector space over a field 𝐹 then  

1- 0. 𝑥 = 0 for any 𝑥 ∈ 𝑋 

2- 𝜆. 0 = 0 for any 𝜆 ∈ 𝐹 

3- −(𝜆. 𝑥) = (−𝜆)𝑥 = 𝜆(−𝑥) 
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4-  For any 𝑥, 𝑦 ∈ 𝑋, then there exists one element 𝑧 ∈ 𝑋 

such that 𝑥 + 𝑧 = 𝑦 

5- 𝜆(𝑥 − 𝑦) = 𝜆𝑥 − 𝜆𝑦 for any 𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ 𝐹 

6-  If 𝜆𝑥 = 0 ⟶  𝜆 = 0 or 𝑥 = 0 

7- If 𝑥 ≠ 0 and 𝜆1. 𝑥 = 𝜆2. 𝑦 then 𝜆1 = 𝜆2 

8- If 𝑥 ≠ 0 , 𝜆 ≠ 0 , 𝑦 ≠ 0 and 𝜆𝑥 = 𝜆𝑦 then 𝑥 = 𝑦 

Definition: 

Let 𝑉  be a vector space over a field 𝐹 and 𝐺 ⊆ 𝐹 , 𝐴, 𝐵 ⊆ 𝑉 we 

define𝐴 + 𝐵, 𝐺𝐴 as follows: 

𝐴 + 𝐵 = {𝑎 + 𝑏, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  

𝐺𝐴 = {𝜆𝑎, 𝜆 ∈ 𝐺, 𝑎 ∈ 𝐴}   

Example:  

Let 𝑅 be a set of a real numbers 

And let 𝐴 = {1,2},   𝐵 = {−1,7}  , 𝐶 = {0,4,6} find 𝐴 + 𝐵, 𝐴 +

𝐶, 4𝐴 

𝐴 + 𝐵 = {1 + (−1), 1 + 7, 2 + (−1), 2 + 7} = {0,8, 1, 9} 

𝐴 + 𝐶 = { 1,5,7,2,8,6}  

4𝐴 = {4.1, 4.2} = {4,8}  

 

Not:  

1- If 𝐴 = {𝑎}   (𝐴 contain only one element we write 𝑎 +

𝐵 instead of  {𝑎} + 𝐵 such that set 𝑎 + 𝐵 to displan 𝐵 by 

𝑎 

2- If 0 ∈ 𝐴 then 𝐵 ⊆ 𝐴 + 𝐵 
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3-    𝐴 + 𝐵 = ⋃ (𝐴 + 𝐵)𝑎∈𝐴  

4-  If 𝐺 = {𝜆} we write 𝜆𝐴 instead of {𝜆}𝐴 or 𝐺𝐴 such that 

𝜆𝐴 = {𝑥 = 𝜆𝑎, 𝑎 ∈ 𝐴} inpartically –𝐴 = (−1)𝐴 =

{−𝑎, 𝑎 ∈ 𝐴} we say that 𝐴 symmetric set if –𝐴 = 𝐴 then 

𝐴⋂(−𝐴) is symmetric for any 𝐴 ⊆ 𝑋 

 

                               

Definition: 

A subset 𝐴 to a space 𝑋 over a field 𝐹 is said to be balanced set 

if 𝜆𝐴 ⊆ 𝐴 ,   ∀𝜆 ∈ 𝐹  and |𝜆| ≤ 1. 

 

Theorem: 

Let 𝐴, 𝐵 are balanced set of a space 𝑋 over a field 𝐹 show that 

whether                                                                                                                       

1- 𝐴⋂𝐵,   2- 𝐴 ∪ 𝐵, 3- 𝐴 + 𝐵, 4- 𝛼𝐴  are balanced sets or not 

Proof:  

1- Let  𝜆 ∈ 𝐹  and |𝜆| ≤ 1  

Since 𝐴, 𝐵 are balanced set 

→ 𝜆𝐴 ⊆ 𝐴 and 𝜆𝐵 ⊆ 𝐵 

We prove that 𝜆(𝐴⋂𝐵) ⊆ 𝐴⋂𝐵 

 Now, let 𝑥 ∈ 𝜆(𝐴⋂𝐵)                                                                    →

  𝑥 = 𝜆𝑦,  where 𝑦 ∈ 𝐴⋂𝐵  
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Since 𝑦 ∈ 𝐴⋂𝐵  →  𝑦 ∈ 𝐴 ∧  𝑦 ∈ 𝐵 

→  𝜆𝑦 ∈ 𝜆𝐴 ∧  𝜆𝑦 ∈ 𝜆𝐵  ( since 𝑥 = 𝜆𝑦) 

→  𝑥 ∈ 𝜆𝐴 ∧  𝑥 ∈ 𝜆𝐵   ( since 𝜆𝐴 ⊆ 𝐴 and 𝜆𝐵 ⊆ 𝐵) 

→  𝑥 ∈ 𝐴 ∧  𝑥 ∈ 𝐵  

→  𝑥 ∈ 𝐴⋂𝐵  

Then we get      𝜆(𝐴⋂𝐵) ⊆ 𝐴⋂𝐵 ∀𝜆 ∈ 𝐹  and |𝜆| ≤ 1 

→  𝐴⋂𝐵 is a balanced set 

2-, 3-  and 4-   (H.W) 

 

Theorem: 

Let 𝐴 be a balanced set of a space over 𝐹 and 𝜆 ∈ 𝐹 , |𝜆| = 1 

then 𝜆𝐴 = 𝐴 and every balanced set is a symmetric 

Proof: 

suppose that 𝐴 is a balanced set  

→ 𝜆𝐴 ⊆ 𝐴 , 𝜆 ∈ 𝐹  and |𝜆| ≤ 1 

→ 𝜆𝐴 ⊆ 𝐴 where |𝜆| = 1 …(1) 

Now, we prove that 𝐴 ⊆ 𝜆𝐴  where |𝜆| = 1 

Let 𝑥 ∈ 𝐴  

Since, |𝜆| ≠ 0 → 𝜆 ≠ 0  

Take 𝛼 =
1

𝜆
  → |𝛼| = 1  becouse |𝛼| = |

1

𝜆
| = |

1

1
| = |1| = 1 

Since 𝐴 is a balanced → 𝛼𝐴 ⊆ 𝐴  
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→ 𝛼𝑥 ∈ 𝐴        (𝑥 ∈ 𝐴,→ 𝛼𝑥 ∈ 𝛼𝐴 ⊆ 𝐴,→ 𝛼𝑥 ∈ 𝐴 ) 

Then ,  𝜆(𝛼𝑥) ∈  𝜆𝐴  

→ 𝜆.
1

𝜆
𝑥 ∈  𝜆𝐴 ,   → 𝑥 ∈  𝜆𝐴  

We get 𝐴 ⊆ 𝜆𝐴  …(2) 

From (1) and (2) we get   𝜆𝐴 = 𝐴 

Now, we prove that 𝐴 is a symmetric  

Suppose that 𝐴 balanced set and let 𝜆 = −1 → |𝜆| = 1    

since, 𝜆𝐴 = 𝐴 → −𝐴 = 𝐴 

 → 𝐴 symmetric  

 

 

                     

Definition  : 

A non empty sub set 𝑀 of a vector space 𝑉 over a field 𝐹 is said 

to be sub space if 𝑀 is a vector space over 𝐹. 

 

 

Example:' 

Let 𝑉 = 𝑅3 is a vector space over 𝑅 and  

1- 𝑀1 = {(𝑥, 𝑦, 0), 𝑥, 𝑦 ∈ 𝑅} 
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2- 𝑀2 = {(𝑥, 0, 𝑦), 𝑥, 𝑦 ∈ 𝑅} 

3-  𝑀1 = {(𝑥, 𝑦, 𝑧), 𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑥 ≥ 0} 

Show that whether 𝑀1, 𝑀2 and 𝑀3 are subspace over 𝑅 or not. 

 

Theorem: 

A non empty sub set 𝑀 of a vector space 𝑉 over a field 𝐹 is 

subspace of 𝑉 iff 

1- ∀ 𝑥, 𝑦 ∈ 𝑀,  → 𝑥 + 𝑦 ∈ 𝑀 

2- ∀ 𝑥 ∈ 𝑀, 𝛼 ∈ 𝐹  → 𝛼𝑥 ∈ 𝑀. 

 

Remark: 

For any vector space 𝑋 over a field 𝐹 then exists two subspace 

are {0} zero subspace and 𝑋 are said trivial subspace  

*If 𝑀 is a proper subset of 𝑋 then 𝑀 is said to be proper sub 

space. 

 

Theorem: 

Let 𝑀1 and 𝑀2 are subspace of a vector space 𝑉 over a field 𝐹 

then  

1- 𝑀1 ∩𝑀2 is a sub space 

2- 𝑀1 ∪𝑀2 is a sub space iff 𝑀1 ⊆ 𝑀2 or 𝑀2 ⊆ 𝑀1 

3-  𝑀1 +𝑀2 is a sub space and 𝑀1 ⊆ 𝑀1 +𝑀2 ∧ 𝑀2 ⊆

𝑀1 +𝑀2 
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Proof 

Let 𝑥, 𝑦 ∈ 𝑀1 ∩𝑀2, 𝛼, 𝛽 ∈ 𝐹 

Since, 𝑥, 𝑦 ∈ 𝑀1 ∩𝑀2 → 𝑥, 𝑦 ∈ 𝑀1  ∧  𝑥, 𝑦 ∈ 𝑀2 

Now, 𝑥, 𝑦 ∈ 𝑀1, 𝑀1 subspace , 𝛼, 𝛽 ∈ 𝐹 

→ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀1  

Also 𝑥, 𝑦 ∈ 𝑀2, 𝑀2 subspace , 𝛼, 𝛽 ∈ 𝐹 

→ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀2  

 

Now, 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀1 ∧ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀2  

→ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀1 ∩𝑀2, 𝛼, 𝛽 ∈ 𝐹 

Then 𝑀1 ∩𝑀2 is a subspace 

 

 

 

 

 

 

 

 

 

 



12 
 

          

 

Definition: 

Let 𝑣1, 𝑣2, … , 𝑣𝑛 ∈ 𝑉, where 𝑉 vector space over a field 𝐹  , 𝑣 ∈

𝑉  then 𝑣 is said to be linear combination of 𝑣1, 𝑣2, … , 𝑣𝑛 if 

there exist 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝐹  such that 

𝑉 = 𝛼1𝑣1 + 𝛼2𝑣2 +⋯+ 𝛼𝑛𝑣𝑛 

 

Example:  

Let 𝑉 = 𝑅3 be a vector space over a field 𝑅 and let 𝑣1 =

(1,0,0), 𝑣2 = (0,1,0), 𝑣3 = (0,0,1) and 𝑣 = (2,3,6) show that 

𝑣 is a linear combination of 𝑣1, 𝑣2, 𝑣3  

Solution: 

𝑣 = (2,3,6) = 2(1,0,0) + 3(0,1,0) + 6(0,0,1)

= (2,0,0) + (0,3,0) + (0,0,6) = (2,3,6) = 𝑣 

→ 𝑣 is  linear combination of 𝑣1, 𝑣2, 𝑣3 where 𝛼1 = 2, 𝛼2 =

3, 𝑣3 = 6 ∈ 𝑅. 
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Example:  

Let 𝐴 = { (1,2,3), (0,1,2), (0,0,1)} prove [𝐴] = 𝑅3 

Solution 

Let 𝑥1 = (1,2,3), 𝑥2 = (0,1,2), 𝑥3 = (0,0,1) to prove that 

every element (𝑥, 𝑦, 𝑧) ∈ 𝑅3is a linear combination of 

𝑥1, 𝑥2, 𝑥3 

(𝑥, 𝑦, 𝑧) = 𝜆1 (1,2,3) + 𝜆2(0,1,2)𝜆3(0,0,1) 

= (𝜆1 , 2𝜆1 , 3𝜆1 ) + (0, 𝜆2, 2𝜆2) + (0,0, 𝜆3) 

= (𝜆1 , 2𝜆1 + 𝜆2, 3𝜆1 +  2𝜆2 + 𝜆3) 

Now, 𝑥 = 𝜆1…(1) 

2𝜆1 + 𝜆2 = 𝑦… (2)  

3𝜆1 + 2𝜆2 + 𝜆3 = 𝑧… (3)  

But (1) in (2)  

2𝑥 + 𝜆2 = 𝑦 →  𝜆2 = 𝑦 − 2𝑥  

𝑥 = 𝜆1, 𝜆2 = 𝑦 − 2𝑥   but in (3) 

3𝑥 + 2(𝑦 − 2𝑥) + 𝜆3 = 𝑧  

→ 𝜆3 = 𝑧 − 3𝑥 − 2(𝑦 − 2𝑥) = 𝑧 − 3𝑥 − 2𝑦 + 4𝑥 

𝜆3 = 𝑥 + 𝑧 − 2𝑦      then 𝑥1, 𝑥2, 𝑥3 generated 𝑅3 

Definition: 

Let 𝑀  is a proper subspace of a vector space 𝑋 over a field 

𝐹, we say that 𝑀 is a maximal subspace if 𝑁 subspace of 𝑋 

such that 𝑀 ⊆ 𝑁 ⊆ 𝑋 then 𝑁 = 𝑋. 
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Theorem: 

Let 𝑀 is a proper subspace of a vector space 𝑋 over a field 𝐹 

then 𝑀 is a maximal subspace iff 𝑋 = [𝑀 ∪ {𝑥0}] for any 

𝑥0 ∉ 𝑀. 

∀𝑥 ∈ 𝑋 is only one way to represent as 𝑥 = 𝑚 + 𝜆𝑥0 such 

that 𝑚 ∈ 𝑀, 𝜆 ∈ 𝐹. 

 

Proof 

Since 𝑥0 ∉ 𝑀 → 𝑀 ⊆ [𝑀 ∪ {𝑥0}]  ⊆ 𝑋 

If 𝑀 is a maximal subspace then by definition we get  

[𝑀 ∪ {𝑥0}] = 𝑋  

The converse 

Suppose that 𝑁subspace  such that 𝑀 ⊆ 𝑁 ⊆ 𝑋    let 𝑥0 ∈ 𝑁,

𝑥0 ∉ 𝑀                                                                      

→ 𝑀 ⊆ [𝑀 ∪ {𝑥0}]  ⊆ 𝑁  

∴ 𝑋 = [𝑀 ∪ {𝑥0}]   → 𝑋 ⊆ 𝑁   → 𝑋 = 𝑁  

Then   𝑀 is a maximal subspace 

Now,  we prove that ∀𝑥 ∈ 𝑋 can be written as only one way    

𝑥 = 𝑚 + 𝜆𝑥, 𝑚 ∈ 𝑀, 𝜆 ∈ 𝐹 

Since ,  𝑋 = [𝑀 ∪ {𝑥0}],   𝑥 ∈ 𝑋 

→ 𝑥 ∈ [𝑀 ∪ {𝑥0}] → 𝑥 = 𝑚 + 𝜆𝑥,   𝜆 ∈ 𝐹, 𝑚 ∈ 𝑀 To prove 

unique ,                                                                             let  𝑥 =

𝑚1 + 𝜆1𝑥0 and 𝑥 = 𝑚2 + 𝜆2𝑥0 such that 𝜆1, 𝜆2 ∈ 𝐹, 𝑚1, 𝑚2 ∈

𝑀 
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Since 𝑥 = 𝑥 →  𝑚1 + 𝜆1𝑥0 = 𝑚2 + 𝜆2𝑥0  𝑚1 −𝑚2 = 𝜆2𝑥0 −

𝜆1𝑥0                                      𝑚1 −𝑚2 = (𝜆2 − 𝜆1)𝑥0 ,                                                            

since 𝑚1, 𝑚2 ∈ 𝑀 → 𝑚1 −𝑚2 ∈ 𝑀 (𝑀 subspace) →

 (𝜆2 − 𝜆1)𝑥0 ∈ 𝑀  and  

𝑥0 =
1

𝜆2−𝜆1⏟
∈𝐹

(𝑚1 −𝑚2)⏟      
∈𝑀 

, 𝑀 subspace 

→
1

𝜆2−𝜆1
(𝑚1 −𝑚2) ∈ 𝑀      

  →  𝑥0 ∈ 𝑀  ( contradiction) then  𝜆1 = 𝜆2 and 𝑚1 = 𝑚2 

  

Definition: 

Let 𝑀1 and 𝑀2 are tow subspace of a vector space 𝑋 over a field 

𝐹 we say that 𝑀1, 𝑀2 are disjoint iff 𝑀1 ∩𝑀2 = {0} 

 

Definition:  

Let 𝑀1 and 𝑀2 are two subspace of a vector space 𝑋 over a field 

𝐹 we say that 𝑋 is direct sum to 𝑀1 and 𝑀2 and denoted by 

𝑋 = 𝑀1⊕𝑀2, if for any 𝑥 ∈ 𝑋 can be written as unique 

method 𝑥 = 𝑚1 +𝑚2 , 𝑚1 ∈ 𝑀1, 𝑚2 ∈ 𝑀2 

 

Theorem: 

Let 𝑀1 and 𝑀2 are two subspace of a vector space 𝑋 over a field 

𝐹 then Let 𝑀1 and 𝑀2 are two subspace of a vector space 𝑋 

over a field 𝑋 = 𝑀1⊕𝑀2 iff  
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1-  𝑀1 ∩𝑀2 = {0}; 

2- 𝑋 = 𝑀1 +𝑀2 

 

 

Proof 

Suppose that 𝑋 = 𝑀1⊕𝑀2 for any 𝑥 ∈ 𝑋 can be written as 

unique way for sum of elements one of thies element in 𝑀1 and 

the other in 𝑀2 then 𝑋 = 𝑀1 +𝑀2 

Now, we prove that 𝑀1 ∩𝑀2 = {0} 

Let 𝑥 ∈ 𝑀1 ∩𝑀2  → 𝑥 ∈ 𝑀1   ∧ 𝑥 ∈ 𝑀2 

If 𝑥 ≠ 0, 𝑥 ∈ 𝑋                                                                 𝑥 = 0 + 𝑥,

0 ∈ 𝑀1, 𝑥 ∈ 𝑀2  or                               𝑥 = 𝑥 + 0, 𝑥 ∈ 𝑀1, 0 ∈ 𝑀2 

Then 𝑥 can be written by two method and this cantradection 

then 𝑀1 ∩𝑀2 = {0} 

The converse :  suppose that (1) and (2) holds                                                                  

let 𝑥 ∈ 𝑋 , since  𝑋 = 𝑀1 +𝑀2                                                                                                     

→ 𝑥 = 𝑚1 +𝑚2 , 𝑚1 ∈ 𝑀1, 𝑚2 ∈ 𝑀2  

Let  𝑥 = 𝑥1 + 𝑥2 , 𝑥1 ∈ 𝑀1, 𝑥2 ∈ 𝑀2                                                                        

𝑥 = 𝑦1 + 𝑦2 , 𝑦1 ∈ 𝑀1, 𝑦2 ∈ 𝑀2                                                                       

𝑥 = 𝑥 

→ 𝑥1 + 𝑥2 = 𝑦1 + 𝑦2                                                                                                       

𝑥1 − 𝑦1 = 𝑦2 − 𝑥2      

Since, 𝑥1 − 𝑦1 ∈ 𝑀1,   𝑦2 − 𝑥2 ∈ 𝑀2  (𝑀1subspace 𝑥1, 𝑦1 ∈

𝑀1, 𝑀2 subspace 𝑥2, 𝑦2 ∈ 𝑀2 ) 

→ 𝑥1 − 𝑦1, 𝑦2 − 𝑥2 ∈ 𝑀1and  𝑥1 − 𝑦1, 𝑦2 − 𝑥2 ∈ 𝑀2 
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Then  → 𝑥1 − 𝑦1, 𝑦2 − 𝑥2 ∈ 𝑀1 ∩𝑀2  

But,  𝑀1 ∩𝑀2 = {0}  

 → 𝑥1 − 𝑦1 = {0},     𝑦2 − 𝑥2 = {0} 

→ 𝑥1 = 𝑦1,     𝑦2 = 𝑥2  

Then we get 𝑥 can be written as one way  

 

Remark: 

If the vector space 𝑋 direct sum of two subspace 𝑀1 and 𝑀2 

(i.e\ 𝑋 = 𝑀1⊕𝑀2 then 𝑀2 is said to be        ( complement 

subspace) 𝑀1 in 𝑋                                          (i.e\ 𝑀1 and 𝑀2 are 

said to be complement subspace). 

 

Theorem: 

If 𝑀 is a subspace of a vector space 𝑋 over a field 𝐹 then 𝑀 is 

has a complement subspace in 𝑋 

 

 

 

Question: 

Show that whether every subspace has unique complement 

subspace 
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Example: 

Let 𝑋 = 𝑅2 and  

𝑀1 = { (𝑥, 0), 𝑥 ∈ 𝑅}  

𝑀2 = { (0, 𝑥), 𝑥 ∈ 𝑅}  

𝑀3 = { (𝑥, 𝑥), 𝑥 ∈ 𝑅}  

𝑋 = 𝑀1⊕𝑀2 = 𝑀1⊕𝑀3 ,  every  𝑀2 and 𝑀3 is a 

complement of 𝑀1. 

 

 

          

 

Definition: 

Let 𝑋 be a vector space over afield 𝑋, a finite set of a vector in 𝑋 

{𝑥1, 𝑥2, … , 𝑥𝑛} is said  to be linear dependent iff , there exists 

𝜆1, 𝜆2, … , 𝜆𝑛 ∈ 𝐹, such that 𝜆1𝑥1 + 𝜆2𝑥2 +⋯+ 𝜆𝑛𝑥𝑛 = 0  

𝜆1, 𝜆2, … , 𝜆𝑛 not all zero  

 

Other wise, we say that the set is linear independent iff  𝜆1𝑥1 +

𝜆2𝑥2 +⋯+ 𝜆𝑛𝑥𝑛 = 0 then 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑛 = 0 
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*If 𝐴  is a subset of 𝑋 we say that 𝐴 is a linear independent if 

every non empty finite subset of 𝐴 is a linear  independent  

i.e\ if there exist a non – empty finite subset of 𝐴 is a linear 

dependent. 

 

Example: 

Show that the vector in 𝑅3 is independent or not 

1- 𝑥1 = (1,−2,1), 𝑥2 = (2,1, −1),   𝑥3 = (6, −4,1) 

2- 𝑥1 = (1,2, −3), 𝑥2 = (1,−3,2),   𝑥3 = (1, −3,2) 

 

Solution 

1-    H.W 

2-   𝜆1𝑥1 + 𝜆2𝑥2 +⋯+ 𝜆𝑛𝑥𝑛 = 0 

𝜆1(1,2, −3) + 𝜆2(1,−3,2) + 𝜆3(1,−3,2) = 0 

(𝜆1, 2𝜆1, −3𝜆1) + (𝜆2, −3𝜆2, 2𝜆2) + (𝜆3, −3𝜆3, 2𝜆3) = 0 

𝜆1 + 𝜆2 + 𝜆3 = 0             . . .  (1) 

2𝜆1 + 3𝜆2−𝜆3 = 0           . . .(2) 

−3𝜆1 + 2𝜆2 + 5𝜆3 = 0  . . . (3) 

 

𝜆1 + 𝜆2 + 𝜆3 = 0     (× 2)  
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                                                              → 2𝜆1 + 2𝜆2 + 2𝜆3 = 0           

                                                        − 2𝜆1+̅3𝜆2+𝜆3 = 0 

                                                                                                                         

                                                      −𝜆2 + 3𝜆3 = 0. . . (4)  

  

2𝜆1 + 3𝜆2−𝜆3 = 0  (× 3) →  6𝜆1 + 9𝜆2−3𝜆3 = 0 −3𝜆1 +

2𝜆2 + 5𝜆3 = 0(× 2) → −6𝜆1 + 4𝜆2 + 10𝜆3 = 0  

 

 

6𝜆1 + 9𝜆2−3𝜆3 = 0  

−6𝜆1 + 4𝜆2 + 10𝜆3 = 0   

13𝜆2 + 7𝜆3 = 0 . . . (5) 

 

From (4) and (5) we get   

−𝜆2 + 3𝜆3 = 0(× 13) → −13𝜆2 + 39𝜆3 = 0  

                                                  13𝜆2 + 7𝜆3 = 0   

                                           46𝜆3 = 0 

→ 𝜆3 = 0  from (4) or (5) 

We get 𝜆2 = 0 from ( 1) or (2) or (3) we get  

𝜆1 = 0 

Then 𝜆1 = 𝜆2 = 𝜆3 = 0 

Linear independent 
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Example: 

Let 𝑥1, 𝑥2 and 𝑥3 are independent vector space of a vector 

space 𝑋 over a field 𝐹 prove that the vectors 𝑥1 + 𝑥2, 𝑥1 −

𝑥2, 𝑥1 − 2𝑥2 + 𝑥3 are linear independent  

 

Solution  

𝜆1(𝑥1 + 𝑥2) + 𝜆2(𝑥1 − 𝑥2) + 𝜆3(𝑥1 − 2𝑥2 + 𝑥3) = (0,0,0) 

(𝜆1𝑥1 + 𝜆1𝑥2) + (𝜆2𝑥1 − 𝜆2𝑥2) + (𝜆3𝑥1 − 2𝜆3𝑥2 + 𝜆3𝑥3)

= (0,0,0) 

 

𝜆1𝑥1 + 𝜆2𝑥1 + 𝜆3𝑥1 = 0  

𝜆1𝑥2 − 𝜆2𝑥2 − 2𝜆3𝑥2 = 0  

𝜆3𝑥3 = 0  

→ (𝜆1 + 𝜆2 + 𝜆3)𝑥1 = 0  

(𝜆1 − 𝜆2 − 2𝜆3)𝑥2 = 0  

𝜆3𝑥3 = 0  

Since, 𝑥1, 𝑥2 and 𝑥3 are independent 

→ 𝜆1 + 𝜆2 + 𝜆3 = 0  

𝜆1 − 𝜆2 − 2𝜆3 = 0  

𝜆3 = 0  
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By solution of equation we get  

𝜆3 = 0  

𝜆1 + 𝜆2 + 𝜆3 = 0  

𝜆1 − 𝜆2 − 2𝜆3 = 0  

2𝜆1 − 𝜆3 = 0   by  𝜆3 = 0 

Then se get  

2𝜆1 = 0            → 𝜆1 = 0 

 

And we get          𝜆2 = 0 

→ 𝜆1 = 𝜆2 = 𝜆3 = 0  

→ 𝑥1 + 𝑥2, 𝑥1 − 𝑥2, 𝑥1 − 2𝑥2 + 𝑥3 are linear independent  

 

 

 

 

 

Definition:  

Let 𝐴 be a non- empty subset of a vector space 𝑋 over a field 𝐹, 

we say that 𝐴 is a basis for 𝑋 iff 𝐴 is a linear independent and 

generated 𝑋 ,  𝑋 = [𝐴] 
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Example:   

Let 𝑅𝑛 be a vector space over a field 𝑅, the set {𝑒1, 𝑒2, … , 𝑒𝑛} 

such that                                                          𝑒1 = (1,0,… ,0),  𝑒2 =

(0,1,… ,0), 𝑒3 = (0,0,1, … ,0), . . , 𝑒𝑛 = (0,0,… ,1) 

Is a basis for 𝑅𝑛 and said to be natural basis 

 

solution 

1- 𝜆1𝑒1 + 𝜆2𝑒2 +⋯+ 𝜆𝑛𝑒𝑛 = 0  

𝜆1(1,0, … ,0) + 𝜆2(0,1, … ,0) + ⋯+ 𝜆𝑛(0,0, … ,1) = 0  

(𝜆1, 0, … ,0) + (0, 𝜆2, … ,0) + ⋯+ (0,0, … , 𝜆𝑛) = 0 

𝜆1 = 0  

𝜆2 = 0  

𝜆3 = 0  

. 

. 

. 

𝜆𝑛 = 0   

𝜆1 = 𝜆2 = 𝜆3 = ⋯ = 𝜆𝑛 = 0  

Linear independent 

2- Let (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅 such that 

(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜆1𝑒1 + 𝜆2𝑒2 +⋯+ 𝜆𝑛𝑒𝑛 
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→ (𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜆1(1,0,… ,0) + 𝜆2(0,1, … ,0) + ⋯+

𝜆𝑛(0,0, … ,1)  

 

→ (𝑥1, 𝑥2, … , 𝑥𝑛) = (𝜆1, 0, … ,0) + (0, 𝜆2, … ,0) + ⋯+

(0,0, … , 𝜆𝑛)  

 

→ 𝑥1 = 𝜆1  

𝑥2 = 𝜆2   

. 

. 

𝑥𝑛 = 𝜆𝑛  

→ 𝑅𝑛 = [𝐴] , where 𝐴 = {𝑒1, 𝑒2, … , 𝑒𝑛}  

→ generated 𝑅𝑛 

→ 𝐴 is a basis 

 

Remark: 

If 𝑋 = {0} then there is no a subset linear independent of 𝑋 

then 𝑋 is a basis. 

 

 

 

 



25 
 

Example: 

Show that the following vectors is a basis for 𝑅3 or not with 

prove 

a-   𝑥1 = (1,3, −4), 𝑥2 = (1,4, −3), 𝑥3 = (2,3, −1) 

b-     𝑥1 = (2,4,3), 𝑥2 = (0,1,1), 𝑥3 = (0,1, −1) 

 

Solution: 

a-   H.W 

b-   

1- 𝜆1𝑥1 + 𝜆2𝑥2 + 𝜆3𝑥3 = 0  

𝜆1(2,4,3) + 𝜆2(0,1,1) + 𝜆3(0,1, −1) = 0  

(2𝜆1, 4𝜆1, 3𝜆1) + (0, 𝜆2, 𝜆2) + (0, 𝜆3, −𝜆3) = 0  

2𝜆1 = 0 . . . (1)  

4𝜆1 + 𝜆2 + 𝜆3 = 0 . . . (2) 

3𝜆1 + 𝜆2 − 𝜆3 = 0 . . . (3) 

By (1) we get    𝜆1 = 0 

Cover 𝜆1 = 0  in (2), (3) we get 

𝜆2 + 𝜆3 = 0 . . . (4) 

𝜆2 − 𝜆3 = 0 . . . (5)  

2𝜆2 = 0     →    𝜆2 = 0  

Cover 𝜆1 = 0  , 𝜆2 = 0  in (2) or (3) we get 

𝜆3 = 0         → 𝜆1 = 𝜆2 = 𝜆3 = 0 linear independent 
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2-  Let (𝑎1, 𝑎2, 𝑎3) ∈ 𝑅
3  such that 

(𝑎1, 𝑎2, 𝑎3) = 𝜆1𝑥1 + 𝜆2𝑥2 + 𝜆3𝑥3  

→ (𝑎1, 𝑎2, 𝑎3) = 𝜆1(2,4,3) + 𝜆2(0,1,1) + 𝜆3(0,1, −1)  

→ (𝑎1, 𝑎2, 𝑎3) = (2𝜆1, 4𝜆1, 3𝜆1) + (0, 𝜆2, 𝜆2) + (0, 𝜆3, −𝜆3)  

 

𝑎1 = 2𝜆1 . . . (1) 

𝑎2 = 4𝜆1 + 𝜆2 + 𝜆3 . . . (2) 

𝑎3 = 3𝜆1 + 𝜆2 − 𝜆3 . . . (3) 

From (1) we get      𝜆1 =
𝑎1

2
      cover in (2) and (3) 

𝑎2 = 4(
𝑎1

2
) + 𝜆2 + 𝜆3  , 𝑎3 = 3

𝑎1

2
+ 𝜆2 − 𝜆3 

𝑎2 = 2𝑎1 + 𝜆2 + 𝜆3 . . . (4) 

 𝑎3 =
3

2
𝑎1 + 𝜆2 − 𝜆3. . . (5)  

𝑎2 + 𝑎3 = 2𝑎1 +
3

2
𝑎1 + 2𝜆2  

𝑎2 + 𝑎3 =
4𝑎1+3𝑎1

2
+ 2𝜆2  

𝑎2 + 𝑎3 =
7

2
𝑎1 + 2𝜆2  

2𝜆2 = 𝑎2 + 𝑎3 −
7

2
𝑎1  

𝜆2 =
𝑎2

2
+ 

𝑎3

2
−
7

4
𝑎1  cover in (4) 

2𝑎1 +
𝑎2

2
+
𝑎3

2
−
7

4
𝑎1 + 𝜆3 = 𝑎2  
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𝜆3 = 𝑎2 − 2𝑎1 −
𝑎2

2
−
𝑎3

2
+
7

4
𝑎1  

=
2−1

2
𝑎2 +

7−8

4
𝑎1 −

𝑎3

2
   

𝜆3 = 1𝑎2 −
1

4
𝑎1 −

1

2
𝑎3   

→ Generated 𝑅3 

→ basis  

 

Definition: 

   Let 𝑋 be a vector space over a field 𝐹 we say that the number 

of the element of a basis of 𝑋 is dimension of 𝑋 and denoted by 

𝑑𝑖𝑚(𝑋)  

 Zero vector space 𝑋 = {0} othough that denoted not have 

basis then 𝑑𝑖𝑚(𝑋) = 0, we say that the vector space 𝑋 is 

finite dimension iff 𝑑𝑖𝑚(𝑋) = 𝑛, 𝑛 ∈ 𝑍+ or 𝑛 = 0 we say 

that the vector space 𝑋 is an infinite dimension is the 

number of the element of a basis of 𝑋 is infinite   

i.e\𝑑𝑖𝑚(𝑋) = ∞ . 

 

Example:  

Find the dimension of he vector space 𝑅3 over a field 𝑅 where 

𝑆 = { (1,0,0), (0,1,0), (0,0,1)} is a basis  

Solution  

𝑑𝑖𝑚(𝑅3) = 3  
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Definition:  

Let 𝐴 be a subset of a vector space 𝑋 over a field 𝐹 𝐴 is said to 

be convex set iff                                                     𝜆𝑥 + (1 − 𝜆)𝑦 ∈

𝐴      ∀𝑥, 𝑦 ∈ 𝐴 , 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

OR  

𝐴 is a convex set iff  𝜆𝐴 + (1 − 𝜆)𝐴 ⊆ 𝐴   ∀𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1   

 The empty set ∅ , and the set contain only one element are 

convex set  

 

 

Example:   

Every subspace is a convex set but the conversely need not true 

in general  

 

Solution   

Let 𝑀 be a subspace of a vector space 𝑋 then ∀𝑥, 𝑦 ∈ 𝑀, 𝛼, 𝛽 ∈

𝐹 
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→ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀 

Put 𝜆 = 𝛼 ,  1 − 𝜆 = 𝛽 ,     0 ≤ 𝜆 ≤ 1 

→  𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑀, ∀𝑥, 𝑦 ∈ 𝑀, 𝜆 ∈ 𝐹 

→ 𝑀 is a convex set 

 

The conversely (  H.W)  by example 

Theorem: 

If 𝐴, 𝐵 are convex sets of a vector space over a field then , 𝐴 +

𝐵 is a convex set of a vector space. 

 

Proof 

Let 𝑥, 𝑦 ∈ 𝐴 + 𝐵, 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

Since 𝑥 ∈ 𝐴 + 𝐵 →   𝑥 = 𝑎 + 𝑏   ∋ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵       and    𝑦 ∈

𝐴 + 𝐵 →  𝑦 = 𝑐 + 𝑑  ∋ 𝑐 ∈ 𝐴, 𝑑 ∈ 𝐵 

Since Since 𝐴 is a convex set and 𝑎, 𝑐 ∈ 𝐴  

→ 𝜆𝑎 + (1 − 𝜆)𝑐 ∈ 𝐴, 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

And  since 𝐵 is a convex set and 𝑏, 𝑑 ∈ 𝐵 

→ 𝜆𝑏 + (1 − 𝜆)𝑑 ∈ 𝐵, 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

Now,  

→ 𝜆𝑥 + (1 − 𝜆)𝑦 = 𝜆(𝑎 + 𝑏) + (1 − 𝜆)(𝑐 + 𝑑)

= (𝜆𝑎 + 𝜆𝑏) + (1 − 𝜆)𝑐 + (1 − 𝜆)𝑑

= 𝜆𝑎 + (1 − 𝜆)𝑏⏟        
∈𝐴

+ 𝜆𝑐 + (1 − 𝜆)𝑑⏟        
∈𝐵

∈ 𝐴 + 𝐵,

𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 
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Then 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴 + 𝐵,  𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

𝐴 + 𝐵 is a convex set 

 

Remark: 

If 𝐴 is a subset of a vector space 𝑋 then (𝛼 + 𝛽)𝐴 ⊆ 𝛼𝐴 + 𝛽𝐴 

 

Proof 

Let 𝑥 ∈ (𝛼 + 𝛽)𝐴 

→ 𝑥 = (𝛼 + 𝛽)𝑎, 𝑎 ∈ 𝐴  

        = 𝛼𝑎 + 𝛽𝑎 ∈ 𝛼𝐴 + 𝛽𝐴  

→ 𝑥 ∈ 𝛼𝐴 + 𝛽𝐴  

→ (𝛼 + 𝛽)𝐴 ⊆ 𝛼𝐴 + 𝛽𝐴  

But 𝛼𝐴 + 𝛽𝐴 ⊈ (𝛼 + 𝛽)𝐴 

 

Theorem: 

If 𝐴 be a subset of a vector space 𝑋 over 𝐹 then 𝐴 is a convex 

set iff  

  (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴, 𝛼, 𝛽 ∈ 𝑅+ 

Proof 

Let 𝐴 is a convex set , 

 we prove that (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴 
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since  by above remark (𝛼 + 𝛽)𝐴 ⊆ 𝛼𝐴 + 𝛽𝐴. . .(1) 

It remains to show that 𝛼𝐴 + 𝛽𝐴 ⊆ (𝛼 + 𝛽)𝐴 

Let 𝑥 ∈ 𝛼𝐴 + 𝛽𝐴 

→ 𝑥 = 𝛼𝑎 + 𝛽𝑏,   𝛼, 𝛽 ∈ 𝑅+, 𝑎, 𝑏 ∈ 𝐴  

𝑥 = (𝛼 + 𝛽) (
𝛼

𝛼+𝛽
𝑎,

𝛽

𝛼+𝛽
𝑏)  

Put, 𝜆 =
𝛼

𝛼+𝛽
, 1 − 𝜆 =

𝛽

𝛼+𝛽
 

Since, 𝛼, 𝛽 ∈ 𝑅+, 𝜆 ≥ 0   and since 

𝛼 ≤ 𝛼 + 𝛽  → 𝜆 ≤ 1  

→ 0 ≤ 𝜆 ≤ 1  

And since, 𝐴 is a convex set → 𝜆𝑎 + (1 − 𝜆)𝑏 ∈ 𝐴 

i.e\ 
𝛼

𝛼+𝛽
𝑎,

𝛽

𝛼+𝛽
𝑏 ∈ 𝐴 

 then 𝑥 ∈ (𝛼 + 𝛽)𝐴 

 → 𝛼𝐴 + 𝛽𝐴 ⊆ (𝛼 + 𝛽)𝐴. . . (2) 

From (1) and (2) we get (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴 

The converse 

Let (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴,   𝛼, 𝛽𝑅+ 

Let 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1  → 1 − 𝜆 ≥ 0  

Then we get  

𝜆𝐴 + (1 − 𝜆)𝐴 = (𝜆 + (1 − 𝜆))𝐴 = 𝐴 ⊆ 𝐴 

Then ,  𝜆𝐴 + (1 − 𝜆)𝐴 ⊆ 𝐴 
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Then 𝐴 is a convex set 

 

Theorem: 

Let 𝐴, 𝐵 are two convex sets of a vector space over a field then 

𝐴 ∩ 𝐵 is a convex set  

 Proof 

Let 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐵, 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

Since, 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐵 → 𝑥, 𝑦 ∈ 𝐴 ∧  𝑥, 𝑦 ∈ 𝐵 

Now, 𝑥, 𝑦 ∈ 𝐴, 𝐴 convex set , 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

→ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴  

Also, 𝑥, 𝑦 ∈ 𝐵, 𝐵 convex set 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

→ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐵  

Now, 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴 ∧ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐵  

→ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴 ∩ 𝐵, 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

Then 𝐴 ∩ 𝐵 is a convex set 

Definition: 

Let 𝐴 be a subset of a vector space 𝑋 then the intersection of all 

convex subset of 𝑋 containing 𝐴 is the smallest convex subset of 

𝑋 containing 𝐴 is called the convex hull of 𝐴 and denoted by 

𝑐𝑜𝑛𝑣(𝐴) , 

  𝑐𝑜𝑛𝑣(𝐴) = {𝐴𝑖 , 𝐴 𝑐𝑜𝑛𝑣𝑒𝑥 𝑠𝑒𝑡 𝑎𝑛𝑑 𝐴 ⊆ 𝐴𝑖} 
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Remark: 

1- 𝐴 ⊆ 𝑐𝑜𝑛𝑣(𝐴) 

2- 𝐴 is a convex set iff 𝐴 = 𝑐𝑜𝑛𝑣(𝐴) 

 

Definition: 

Let 𝑋 be a vector space over a field 𝐹 let 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋, 

we say that the vector 𝑥 ∈ 𝑋 is a convex combination for the 

vector 𝑥1, 𝑥2, … , 𝑥𝑛 if  𝑥 = ∑ 𝜆𝑖𝑥𝑖 ,   𝜆𝑖 ≥ 0, ∑ 𝜆𝑖
𝑛
𝑖=1 = 1 𝑛

𝑖=1  

 

 

 

Definition:  

Let 𝐴 be a subset of a vector space 𝑋 over a field 𝐹 𝐴 is said to 

be affine set iff                                                     𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴      

∀𝑥, 𝑦 ∈ 𝐴 , 𝜆 ∈ 𝐹 

 The empty set ∅ , and the set contain only one element are 

affine sets  

 

Example:   

Every affine set is a convex set but the conversely need not true 

in general  
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Solution   

Let 𝐴 be affine set in  𝑋 then 

 ∀𝑥, 𝑦 ∈ 𝐴, 𝜆 ∈ 𝐹 

→ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴  

For any 𝜆 ∈ 𝐹 

→ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴 𝑥, 𝑦 ∈ 𝐴, 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

→ 𝐴 is a convex set 

 

The conversely (  H.W)  by example 

 

Example:   

Every subspace is affine set but the conversely need not true in 

general  

 

 

Theorem: 

If 𝐴, 𝐵 are affine sets of a vector space over a field then , 𝐴 + 𝐵 

is affine set of a vector space. 

 

Proof 
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Let 𝑥, 𝑦 ∈ 𝐴 + 𝐵, 𝜆 ∈ 𝐹, 

Since 𝑥 ∈ 𝐴 + 𝐵 →   𝑥 = 𝑎 + 𝑏   ∋ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵       and    𝑦 ∈

𝐴 + 𝐵 →  𝑦 = 𝑐 + 𝑑  ∋ 𝑐 ∈ 𝐴, 𝑑 ∈ 𝐵 

Since 𝐴 is a convex set and 𝑎, 𝑐 ∈ 𝐴  

→ 𝜆𝑎 + (1 − 𝜆)𝑐 ∈ 𝐴, 𝜆 ∈ 𝐹,  

And  since 𝐵 is a convex set and 𝑏, 𝑑 ∈ 𝐵 

→ 𝜆𝑏 + (1 − 𝜆)𝑑 ∈ 𝐵, 𝜆 ∈ 𝐹,  

Now,  

→ 𝜆𝑥 + (1 − 𝜆)𝑦 = 𝜆(𝑎 + 𝑏) + (1 − 𝜆)(𝑐 + 𝑑)

= (𝜆𝑎 + 𝜆𝑏) + (1 − 𝜆)𝑐 + (1 − 𝜆)𝑑

= 𝜆𝑎 + (1 − 𝜆)𝑏⏟        
∈𝐴

+ 𝜆𝑐 + (1 − 𝜆)𝑑⏟        
∈𝐵

∈ 𝐴 + 𝐵,

𝜆 ∈ 𝐹,  

Then 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐴 + 𝐵,  𝜆 ∈ 𝐹 

𝐴 + 𝐵 is affine set 

 

Theorem: 

Let 𝑋 be a vector space and let 𝑥0 ∈ 𝑋 then 

1- If 𝑀 is a subspace in 𝑋 then 𝑥0 +𝑀 is affine set in 𝑋 

2- If 𝐴 is affine set in 𝑋 then 𝐴 − 𝑥0is a subspace in 𝑋 

Proof 

1- Suppose that 𝑀  is a subspace and let 𝑥, 𝑦 ∈ 𝑥0 +𝑀, 𝜆 ∈

𝐹 

𝑥 = 𝑥0 +𝑚1, 𝑦 = 𝑥0 +𝑚2, 𝑚1,𝑚2 ∈ 𝑀  
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𝜆𝑥 + (1 − 𝜆)𝑦 = 𝜆(𝑥0 +𝑚1) + (1 − 𝜆)(𝑥0 +𝑚2) 

= 𝜆𝑥0 + 𝜆𝑚1 + (1 − 𝜆)𝑥0 + (1 − 𝜆)𝑚2 

= 𝜆𝑥0 + (1 − 𝜆)𝑥0 + 𝜆𝑚1 + (1 − 𝜆)𝑚2 

= (𝜆𝑥0 + 𝑥0 − 𝜆𝑥0) + 𝜆𝑚1 + (1 − 𝜆)𝑚2 

= 𝑥0 + 𝜆𝑚1 + (1 − 𝜆)𝑚2 

Since, 𝑚1, 𝑚2 ∈ 𝑀,𝑀 is a subspace   

→ 𝜆⏟
𝛼

𝑚1 + (1 − 𝜆)⏟    
𝛽

𝑚2 ∈ 𝑀  

Then 𝑥0 + 𝜆𝑚1 + (1 − 𝜆)𝑚2 ∈ 𝑥0 +𝑀 

→ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑥0 +𝑀   

→ 𝑥0 +𝑀  is affine set 

2- H.W 

 

  

Theorem:   H.W 

Let 𝐴, 𝐵 are two affine sets of a vector space over a field then 

𝐴 ∩ 𝐵 is affine set  

 

Definition: 

Let 𝐴 be a subset of a vector space 𝑋 the the smallest set 𝑋 

contain 𝐴 is called affine set generated by  𝐴 and denoted by 

𝑎𝑓𝑓(𝐴) , 
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  𝑎𝑓𝑓(𝐴) = {𝐴𝑖 , 𝐴 𝑐𝑎𝑓𝑓𝑖𝑛𝑒 𝑠𝑒𝑡 𝑎𝑛𝑑 𝐴 ⊆ 𝐴𝑖} 

 

Remark: 

1- 𝑥 = ∑ 𝜆𝑖𝑥𝑖 , 𝑥𝑖 ∈ 𝐴, 𝜆𝑖 ≥ 0, ∑ 𝜆𝑖
𝑛
𝑖=1 = 𝑛

𝑖=1 𝐴 

2-  𝐴is affine set iff 𝐴 = 𝑎𝑓𝑓(𝐴) 

 

 

 

 

 

Definition: 

Let 𝑋, 𝑌 are vector space over a field 𝐹, the function 𝑓: 𝑋 → 𝑌 is 

said to be linear transformation if the conditions holds 

1-  𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦), ∀𝑥, 𝑦 ∈ 𝑋 

2- 𝑓(𝜆𝑥) = 𝜆𝑓(𝑥), ∀𝑥 ∈ 𝑋, 𝜆 ∈ 𝐹 

This two conditions equivalent to the condition 𝑓(𝛼𝑥 + 𝛽𝑦) =

𝛼𝑓(𝑥) + 𝛽𝑓(𝑦), ∀𝑥, 𝑦 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝐹  

 

*-  linear transformation  𝑓: 𝑋 → 𝑌  is said to be linear function 

on 𝑋 
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Example: 

Let 𝑓: 𝑅3 → 𝑅2 define as follows 

𝑓(𝑥1, 𝑥2, 𝑥3) = (𝑥1, 𝑥2) 

∀(𝑥1, 𝑥2, 𝑥3) ∈ 𝑅
3 show that 𝑓 linear transformation 

Solution 

Let 𝑥, 𝑦 ∈ 𝑅3, 𝛼, 𝛽 ∈ 𝐹 

Since 𝑥 ∈ 𝑅3 → 𝑥 = (𝑥1, 𝑥2, 𝑥3) and 

𝑦 ∈ 𝑅3 → 𝑥 = (𝑦1, 𝑦2, 𝑦3)  

𝛼𝑥 + 𝛽𝑦 = 𝛼(𝑥1, 𝑥2, 𝑥3) + 𝛽(𝑦1, 𝑦2, 𝑦3) 

= (𝛼𝑥1, 𝛼𝑥2, 𝛼𝑥3) + (𝛽𝑦1, 𝛽𝑦2, 𝛽𝑦3) 

= (𝛼𝑥1 + 𝛽𝑦1, 𝛼𝑥2 + 𝛽𝑦2, 𝛼𝑥3 + 𝛽𝑦3) 

𝑓(𝛼𝑥 + 𝛽𝑦) = 𝑓(𝛼𝑥1 + 𝛽𝑦1, 𝛼𝑥2 + 𝛽𝑦2, 𝛼𝑥3 + 𝛽𝑦3) 

= (𝛼𝑥1 + 𝛽𝑦1, 𝛼𝑥2 + 𝛽𝑦2) 

= (𝛼𝑥1, 𝛼𝑥2) + (𝛽𝑦1, 𝛽𝑦2) 

= 𝛼(𝑥1, 𝑥2) + 𝛽(𝑦1, 𝑦2) 

= 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) 

Then 𝑓 is a linear transformation 

 

Example: 

Show that the function 𝑓: 𝑅2 → 𝑅 define as follows 
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𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2, ∀(𝑥1, 𝑥2) ∈ 𝑅
2 

Is not linear transformation 

Solution 

Let 𝑥, 𝑦 ∈ 𝑅2 such that  

𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2)  

𝑥 + 𝑦 = (𝑥1, 𝑥2) + (𝑦1, 𝑦2) = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2) 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥1 + 𝑦1, 𝑥2 + 𝑦2) = (𝑥1 + 𝑦1)(𝑥2 + 𝑦2)

= 𝑥1𝑥2 + 𝑥1𝑦2 + 𝑦1𝑥2 + 𝑦1𝑦2…(1) 

𝑓(𝑥) + 𝑓(𝑦) = 𝑓(𝑥1, 𝑥2) + 𝑓(𝑦1, 𝑦2) = 𝑥1𝑥2 + 𝑦1𝑦2…(2) 

Since (1)≠(2) 

→ 𝑓(𝑥 + 𝑦) ≠ 𝑓(𝑥) + 𝑓(𝑦)  

𝑓 is not linear transformation 

 

Remark: 

1-  Zero transformation: if 𝑋 and 𝑌 are two vector spaces 

over a field 𝐹 then, the function 𝑓: 𝑋 → 𝑌 define as 

follows , 𝑓(𝑥) = 0, ∀𝑥 ∈ 𝑋 is a linear transformation 

2- Identity transformation: if 𝑋 and 𝑌 are two vector spaces 

over a field 𝐹 then, the function 𝑓: 𝑋 → 𝑌 define as 

follows , 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝑋 is a linear transformation 

 

Some properties of linear transformation 
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Theorem: 

If 𝑓: 𝑋 → 𝑌 linear transformation then  

1-  𝑓(0) = 0 

2- 𝑓(−𝑥) = −𝑓(𝑥) 

3- 𝑓(𝑥 − 𝑦) = 𝑓(𝑥) − 𝑓(𝑦) 

4- 𝑓(∑ 𝜆𝑖𝑥𝑖
𝑛
𝑖=1 ) = ∑ 𝜆𝑖𝑓(𝑥𝑖)

𝑛
𝑖=1   

 

Proof 

1- Since 0 = 0 ∙ 0 

𝑓(0) = 𝑓(0 ∙ 0) = 0 ∙ 𝑓(0) = 0   

2- 𝑓(−𝑥) = 𝑓((−1)𝑥) = −1𝑓(𝑥) = −𝑓(𝑥), −1 ∈ 𝐹  

3- H.W 

4- We prove by mathematical induction 

If 𝑛 = 1 then  

𝑓 (∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

) = 𝑓(𝜆1𝑥1) = 𝜆1𝑓(𝑥1) =∑𝜆𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

  

Let the statement is true when 𝑛 = 𝑘 

i.e\  𝑓(∑ 𝜆𝑖𝑥𝑖
𝑘
𝑖=1 ) = ∑ 𝜆𝑖𝑓(𝑥𝑖)

𝑘
𝑖=1  

we prove that the statement is a true for 𝑛 = 𝑘 + 1 

𝑓 (∑𝜆𝑖𝑥𝑖

𝑘+1

𝑖=1

) = 𝑓 (∑𝜆𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝜆𝑘+1𝑥𝑘+1 )

=∑𝜆𝑖

𝑘

𝑖=1

𝑓(𝑥𝑖) + 𝜆𝑘+1𝑓(𝑥𝑘+1 ) = ∑𝜆𝑖

𝑘+1

𝑖=1

𝑓(𝑥𝑖) 
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Then the statement is true for any 𝑛 when 𝑛 is a positive 

integer number 

 

 

Theorem: 

If 𝑋, 𝑌 and 𝑍 are vector space over afield 𝐹 and 𝑓: 𝑋 →

𝑌, 𝑔: 𝑌 → 𝑍 are linear transformation then 𝑔 ∘ 𝑓: 𝑋 → 𝑍 is a 

linear transformation 

Proof 

Let 𝑥, 𝑦 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝐹 

 𝑔 ∘ 𝑓(𝛼𝑥 + 𝛽𝑦) 

= 𝑔(𝑓(𝛼𝑥 + 𝛽𝑦)) 

 = 𝑔(𝛼𝑓(𝑥) + 𝛽𝑓(𝑦)) 

                        = 𝛼𝑔(𝑓(𝑥)) + 𝛽𝑔(𝑓(𝑦)) 

                         = 𝛼𝑔 ∘ 𝑓(𝑥) + 𝛽𝑔 ∘ 𝑓(𝑦)  

𝑔 ∘ 𝑓 is a linear transformation  

 

Theorem: 

If 𝑓: 𝑋 → 𝑌 is a linear transformation and 𝐴 ⊆ 𝑋, 𝐵 ⊆ 𝑌 then  

1- If 𝐴 is a subspace (convex set) in 𝑋 then 𝑓(𝐴) is a 

subspace (convex set ) in 𝑌 
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2-  If 𝐵 is a subspace (convex set) in 𝑌 then 𝑓−1(𝐵) is a 

subspace (convex set ) in 𝑋 

Proof 

1- Let  𝐴 be a subspace in 𝑋 

We prove that 𝑓(𝐴) is a subspace in 𝑌 

𝑓(𝐴) = {𝑓(𝑥), 𝑥 ∈ 𝐴} ⊆ 𝑌 

Since 𝐴 is a subspace → 0 ∈ 𝐴 

0 = 𝑓(0) ∈ 𝑓(𝐴)  

→ 𝑓(𝐴) ≠ ∅  

Let 𝛼, 𝛽 ∈ 𝐹, 𝑎, 𝑏 ∈ 𝑓(𝐴) 

𝑎 = 𝑓(𝑐), 𝑏 = 𝑓(𝑑), 𝑐, 𝑑 ∈ 𝐴 

𝛼𝑎 + 𝛽𝑏 = 𝛼𝑓(𝑐) + 𝛽𝑓(𝑑) 

= 𝑓(𝛼𝑐) + 𝑓(𝛽𝑑) 

= 𝑓(𝛼𝑐 + 𝛽𝑑) 

Since 𝑐, 𝑑 ∈ 𝐴, 𝐴 subspace 𝛼, 𝛽 ∈ 𝐹 

→ 𝛼𝑐 + 𝛽𝑑 ∈ 𝐴  

→ 𝑓(𝛼𝑐 + 𝛽𝑑) ∈ 𝑓(𝐴)  

→ 𝛼𝑎 + 𝛽𝑏 ∈ 𝑓(𝐴)  

→ 𝑓(𝐴) is a subspace 

Let 𝐵 is a convex set in 𝑌  

We prove that 𝑓−1(𝐵) is a convex set in 𝑋 

𝑓−1(𝐵) = {𝑥 ∈ 𝑋, 𝑓(𝑥) ∈ 𝐵} ⊆ 𝑋 
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Let 𝑎, 𝑏 ∈ 𝑓−1(𝐵), 𝛾 ∈ 𝐹, 0 ≤ 𝛾 ≤ 1 

𝑓(𝑎), 𝑓(𝑏) ∈ 𝐵 

Since 𝐵 convex set  

→ 𝛾𝑓(𝑎) + (1 − 𝛾)𝑓(𝑏) ∈ 𝐵  

→ 𝑓(𝛾𝑎) + 𝑓((1 − 𝛾)𝑏) ∈ 𝐵

→ 𝑓(𝛾𝑎 + (1 − 𝛾)𝑏)  ∈ 𝐵
} linear transf 

→ 𝛾𝑎 + (1 − 𝛾)𝑏 ∈ 𝑓−1(𝐵)  

𝑓−1(𝐵)  is a convex set 

 

 

 

Remark: 

If 𝑋 is a vector space of finite dimension and let 

{𝑥1, 𝑥2, … , 𝑥𝑛} = 𝐵 is a basis of 𝑋 then 𝑥𝑖 ∈ 𝑋 can be written 

unique method as  

𝑥 =∑𝛾𝑖𝑥𝑖

𝑛

𝑖=1

, 𝛾𝑖 ∈ 𝐹 

 

Theorem: 

If 𝑋 be a vector space and {𝑥1, 𝑥2, … , 𝑥𝑛} is a basis of 𝑋 then, 

foe any set {𝑦1, 𝑦2, … , 𝑦𝑛} contain 𝑛 vectors in voctor space 𝑌 

there exists only one linear transformation method  



44 
 

𝑓: 𝑋 → 𝑌, such that 𝑓(𝑥𝑖) = 𝑦𝑖  

 

Proof 

Let 𝑥 ∈ 𝑋, since {𝑥1, 𝑥2, … , 𝑥𝑛} basis 

→ 𝑥 has unique method  

𝑥 = ∑ 𝛾𝑖𝑥𝑖
𝑛
𝑖=1 , 𝛾𝑖 ∈ 𝐹  

Define the function 𝑓: 𝑋 → 𝑌, such that 𝑓(𝑥) = ∑ 𝛾𝑖
𝑛
𝑖=1 𝑦𝑖  to 

prove that  

1- 𝑓 linear transformation 

Let 𝑥, 𝑦𝑋, 𝛼, ∈ 𝐹 

Then 𝑥 = ∑ 𝛿𝑖𝑥𝑖
𝑛
𝑖=1 , 𝑦 = ∑ 𝜇𝑖𝑥𝑖

𝑛
𝑖=1  

→ 𝛼𝑥 + 𝛽𝑦 = 𝛼∑𝛿𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝛽∑𝜇𝑖𝑥𝑖

𝑛

𝑖=1

 

=∑(𝛼𝛿𝑖 + 𝛽𝜇𝑖)𝑥𝑖

𝑛

𝑖=1

 

𝑓(𝛼𝑥 + 𝛽𝑦) = 𝑓 (∑(𝛼𝛿𝑖 + 𝛽𝜇𝑖)𝑥𝑖

𝑛

𝑖=1

) =∑(𝛼𝛿𝑖 + 𝛽𝜇𝑖)𝑦𝑖

𝑛

𝑖=1

 

= 𝛼∑𝛿𝑖𝑦𝑖 + 𝛽∑𝜇𝑖𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

= 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) 

2- 𝑓(𝑥𝑖) = 𝑦𝑖  

𝑥𝑖 = 0 ∙ 𝑥1 + 0 ∙ 𝑥2 = ⋯+ 1 ∙ 𝑥𝑖 +⋯+ 0 ∙ 𝑥𝑛 
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𝑓(𝑥𝑖)  

= 𝑓(0 ∙ 𝑥1 + 0 ∙ 𝑥2 +⋯+ 1 ∙ 𝑥𝑖 +⋯+ 0 ∙ 𝑥𝑛) 

= 𝑓(0 ∙ 𝑥1) + 𝑓(0 ∙ 𝑥2) + ⋯+ 𝑓(1 ∙ 𝑥𝑖) + ⋯+ 𝑓(0 ∙ 𝑥𝑛)  

= 0 ∙ 𝑓(𝑥1) + 0 ∙ 𝑓(𝑥2) + ⋯+ 1 ∙ 𝑓(𝑥𝑖) + ⋯+ 0 ∙ 𝑓(𝑥𝑛)  

= 0 + 0 +⋯+ 1 ∙ 𝑦𝑖 +⋯+ 0 = 𝑦𝑖  

𝑓(𝑥𝑖) = 𝑦𝑖  

3- 𝑓  has only one linear transformation (unique method)  

If 𝑔: 𝑋 → 𝑌 is a linear transformation such that 𝑔(𝑥𝑖) = 𝑦𝑖 

To prove that 𝑓(𝑥) = 𝑔(𝑥) 

Let 𝑥 ∈ 𝑋 → 𝑥 has unique method  

𝑥 =∑𝛾𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑔(𝑥) = 𝑔 (∑𝛾𝑖𝑥𝑖

𝑛

𝑖=1

) =∑𝛾𝑖

𝑛

𝑖=1

𝑔(𝑥𝑖) =∑𝛾𝑖𝑦𝑖 = 𝑓(𝑥)

𝑛

𝑖=1

 

 

 

Example: 

Find the linear transformation 𝑓: 𝑅2 → 𝑅2 such that  

𝑓(1,1) = (0,2), 𝑓(3,1) = (2, −4) 

 

Solution 
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Let (𝑥, 𝑦) ∈ 𝑅2  

→ (𝑥, 𝑦) = 𝛼1(3,1) + 𝛼2(1,1) 

= (3𝛼1, 𝛼1) + (𝛼2, 𝛼2) 

= (3𝛼1 + 𝛼2, 𝛼1 + 𝛼2) 

 

→ 𝑥 = 3𝛼1 + 𝛼2  

−𝑦 = −𝛼1 ∓ 𝛼2  

𝑥 − 𝑦 = 3𝛼1 − 𝛼1  

𝑥 − 𝑦 = 2𝛼1  

𝛼1 =
𝑥−𝑦

2
  

 

→ 𝑥 = 3𝛼1 + 𝛼2  

    𝑦 = 𝛼1 + 𝛼2     ∗ 3  

𝑥 = 3𝛼1 + 𝛼2  

−3𝑦 = −3𝛼1 ∓ 3𝛼2   

 𝑥 − 3𝑦 = 𝛼2 − 3𝛼2 

𝑥 − 3𝑦 = −2𝛼2  

𝛼2 =
3𝑦−𝑥

2
  

𝑓(𝑥, 𝑦) = 𝛼1𝑓(3,1) + 𝛼2𝑓(1,1)  

= 𝛼1(2,−4) + 𝛼2(0,2)  

=
𝑥 − 𝑦

2
(2, −4) +

3𝑦 − 𝑥

2
(0,2) 
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= (𝑥 − 𝑦, 2𝑦 − 2𝑥) + (0,3𝑦 − 𝑥) 

= (𝑥 − 𝑦, 5𝑦 − 3𝑥) 

 

Definition: 

Let 𝑓: 𝑋 → 𝑌 is a linear transformation then the kernel of 𝑓 

denoted by ker(𝑓) and define as follows: 

𝑘𝑒𝑟(𝑓) = {𝑥 ∈ 𝑋: 𝑓(𝑥) = 0}  

i.e\ ker(𝑓) = 𝑓−1({0}) 

 

Theorem: 

if 𝑓: 𝑋 → 𝑌 is a linear transformation then 

1- Ker(𝑓) is a subspace of 𝑋 

2- Ker(𝑓) = {0} iff 𝑓  is one- to -one 

Proof 

1-  

a- Since 𝑓(0) = 0 

→ 0 ∈ 𝑘𝑒𝑟 (𝑓)  

→ 𝑘𝑒𝑟(𝑓) ≠ ∅  

b- Let 𝑥, 𝑦 ∈ 𝑘𝑒𝑟(𝑓) , 𝛼, 𝛽 ∈ 𝐹 

Since 𝑥 ∈ 𝑘𝑒𝑟(𝑓) → 𝑓(𝑥) = 0 and 

𝑦 ∈ 𝑘𝑒𝑟(𝑓) → 𝑓(𝑦) = 0  

Now, 𝑓(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) = 0 + 0 = 0 
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Then 𝑓(𝛼𝑥 + 𝛽𝑦) = 0 

→ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑘𝑒𝑟(𝑓)  

→ 𝑘𝑒𝑟 (𝑓) is a subspace  

 

 

2- Suppose that ker(𝑓)= {0} 

To prove that 𝑓 is one –to – one  

Let 𝑥, 𝑦 ∈ 𝑋 such that 𝑓(𝑥) = 𝑓(𝑦) 

𝑓(𝑥) − 𝑓(𝑦) = 0  

→ 𝑓(𝑥 − 𝑦) = 0  

→ 𝑥 − 𝑦 ∈ 𝑘𝑒𝑟(𝑓)  

𝑥 − 𝑦 = 0  

→ 𝑥 = 𝑦  

→ 𝑓 is one-to-one 

The converse :  

Suppose that 𝑓 is linear transformation one –to- one 

To show that 𝑘𝑒𝑟(𝑓) = {0} 

Let 𝑥 ∈ 𝑘𝑒𝑟(𝑓) → 𝑓(𝑥) = 0  

Since 𝑓(0) = 0  

0 = 0  

→ 𝑓(𝑥) = 𝑓(0)  

Since 𝑓 linear one-to-one 
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→ 𝑥 = 0   

→ 𝑘𝑒𝑟(𝑓) = {0}  

 

 

 

Theorem:  

Let 𝑓: 𝑋 → 𝑌 linear transformation , if 𝑋  finite dimension then 

the subspace 𝑓(𝑥) also finite dimension 

Proof 

If 𝑑𝑖𝑚(𝑋) = 0  then 𝑋 = {0} 

And 𝑓(𝑋) = {𝑓(𝑥): 𝑥 ∈ 𝑋} = {0} 

→ 𝑑𝑖𝑚(𝑓(𝑥)) = 0  

If 𝑑𝑖𝑚(𝑋) = 𝑛 > 0  

Let 𝐵 = {𝑥1, 𝑥2, … , 𝑥𝑛} basis of 𝑋 and let 𝑦 ∈ 𝑓(𝑋) 

→ ∃𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦 

Since, 𝐵 basis of 𝑋 → 𝑥 has only one method  

𝑥 =∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

, 𝜆𝑖 ∈ 𝐹 

And 

𝑓(𝑥) =∑𝜆𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1
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𝑦 =∑𝜆𝑖𝑓(𝑥𝑖) … (1)

𝑛

𝑖=1

 

Let 𝐵′ = {𝑓(𝑥1), 𝑓(𝑥2), … 𝑓(𝑥𝑛)}  

→ 𝐵′ basis of 𝑓(𝑥) 

→ 𝑓(𝑋) finite dimension 

 

Sylvester's law  

Let 𝑓: 𝑋 → 𝑌 linear transformation , if 𝑋 finite dimension then 

 𝑑𝑖𝑚(𝑋) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑓)) + 𝑑𝑖𝑚(𝑓(𝑥)) 

Corollary: 

Let 𝑓: 𝑋 → 𝑌 linear transformation if 𝑋, 𝑌 are finite dimension 

such that 𝑑𝑖𝑚(𝑋) = 𝑑𝑖𝑚(𝑌) then the transformation 𝑓 is a 

one- to one iff is one to 

Proof 

Suppose that 𝑓 is a linear transformation 𝑑𝑖𝑚 (𝑋) = 𝑑𝑖𝑚(𝑌) 

and 𝑓 is one- to –one 

Since 𝑓 is one-to-one  

→ 𝑘𝑒𝑟(𝑓) = {0}       (by theorem)  

→ 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑓)) = 0  

By sylvester's law  

𝑑𝑖𝑚(𝑋) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑓)) + 𝑑𝑖𝑚(𝑓(𝑥)) 

→ 𝑑𝑖𝑚(𝑋) = 𝑑𝑖𝑚(𝑓(𝑥)) 
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Then 𝑑𝑖𝑚(𝑓(𝑥)) = 𝑑𝑖𝑚(𝑦) 

→ 𝑓(𝑥) = 𝑦 

→ 𝑓 is one to 

The converse 

Suppose that 𝑓 is one to 

→ 𝑦 = 𝑓(𝑥) and 

 𝑑𝑖𝑚(𝑋) = 𝑑𝑖𝑚(𝑦) = 𝑑𝑖𝑚𝑓(𝑓(𝑥)) 

→ 𝑑𝑖𝑚(𝑓(𝑥)) = 0 → 𝑘𝑒𝑟(𝑓) = 0 

→ 𝑓 one-to-one 

Definition: 

Let 𝑋, 𝑌 vector space over afield 𝐹, we say that 𝑋, 𝑌 linear 

isomorphic and write 𝑋 ≈ 𝑌 if linear transformation ( one-to-

one, one to)  

From 𝑋 to 𝑌 the function is called linear isomorphism  

 

Theorem: 

If 𝑋 be a vector space over 𝐹 and 𝑋 finite dimension 𝑑𝑖𝑚(𝑋) =

𝑛 then 𝑋 ≈ 𝐹𝑛 

Proof 

Let {𝑥1, 𝑥2, … , 𝑥𝑛} basis of 𝑋  

→ ∀𝑥 ∈ 𝑋, 𝑥 =∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

, 𝜆𝑖 ∈ 𝐹 
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Define the function  

𝑓: 𝑋 → 𝐹𝑛  as follows 

𝑓(𝑥) = (𝜆1, 𝜆2, … , 𝜆𝑛) 

We prove that 𝑓 is linear transformation , one-to-one, one to    

H.W 

Theorem: 

If 𝑋, 𝑌 are two finite dimension  vectors space over a field 𝐹 

then 𝑋 ≈ 𝑌 iff 𝑑𝑖𝑚(𝑋) = 𝑑𝑖𝑚(𝑌) 

Proof 

Let 𝑋 ≈ 𝑌  

→ ∃ linear transformation 𝑓: 𝑋 → 𝑌 

 → 𝑘𝑒𝑟(𝑓) = 0, 𝑓(𝑥) = 𝑦 

𝑑𝑖𝑚(𝑋) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑓)) + 𝑑𝑖𝑚(𝑓(𝑥)) 

= 0 + 𝑑𝑖𝑚(𝑦) 

= 𝑑𝑖𝑚(𝑦) 

The converse 

By theorem  

𝑋 ≈ 𝐹𝑛 

And 𝑦 = 𝐹𝑛 

Then 𝑋 ≈ 𝑌 
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Definition: 

Let 𝑋 be a non empty set a function 𝑑: 𝑋 × 𝑋 → 𝑅 such that  

1- 𝑑(𝑥, 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋 

2- 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦, ∀𝑥, 𝑦 ∈ 𝑋 

3- 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝑋 

4- 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) = 𝑑(𝑧, 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 

Then (𝑋, 𝑑) is said to be metric space 

 

Definition: 

Let 𝑋 be a vector space over a a field 𝑅 then a norm on 𝑋 is a 

map ‖. ‖: 𝑋 → 𝑅 such that  

1- ‖𝑥‖ ≥ 0, ∀𝑥 ∈ 𝑋 

2- ‖𝑥‖ = 0 iff 𝑥 = 0 

3- ‖𝜆𝑥‖ = |𝜆|‖𝑥‖, ∀𝑥 ∈ 𝑋, 𝜆 ∈ 𝑅 

4- ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, ∀𝑥, 𝑦 ∈ 𝑋 

Then (𝑋, ‖. ‖) is said to be normed space  

 

 



54 
 

Example: 

Let 𝑋 = 𝑅 be a vector space over 𝑅 and ‖. ‖: 𝑅 → 𝑅 such that 

‖𝑥‖ = |𝑥|, ∀𝑥 ∈ 𝑅 show that ‖. ‖is a norm on 𝑅 

Solution 

1- Let 𝑥 ∈ 𝑅 → ‖𝑥‖ = |𝑥| ≥ 0 → ‖𝑥‖ ≥ 0 

2- Let 𝑥 ∈ 𝑅 if ‖𝑥‖ = 0 → |𝑥| = 0                                                 

→ 𝑥 = 0                                                                         if 𝑥 =

0 → |𝑥| = 0 → ‖𝑥‖ = |𝑥| = 0 → ‖𝑥‖ = 0 

3- Let 𝑥 ∈ 𝑅 and 𝜆 ∈ 𝑅                                                      ‖𝜆𝑥‖ =

|𝜆𝑥| = |𝜆||𝑥| = |𝜆|‖𝑥‖ 

4- Let 𝑥, 𝑦 ∈ 𝑅  

‖𝑥 + 𝑦‖ = |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| = ‖𝑥‖ + ‖𝑦‖ 

∴  ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 

→ ‖. ‖ norm on 𝑅 

→ (𝑋, ‖𝑥‖)  normed space 

 

Remark: 

1- Holder's inqualty                                                               for 

𝑝, 𝑞 ∈ 𝑅, ∋
1

𝑝
+
1

𝑞
= 1 then                                                                                              

∑|𝑥𝑖𝑦𝑖| ≤ (∑|𝑥𝑖|
𝑝) 

1

𝑝 (∑|𝑦𝑖|
𝑝)

1

𝑞                                              if 

𝑝 = 2, 𝑞 = 2 then                                                                            

∑|𝑥𝑖𝑦𝑖| ≤ (∑|𝑥𝑖|
2) 

1

2 (∑|𝑦𝑖|
2)

1

2                                  is called 

cushy – schwar's inequality 

2-  Minkowk's inequality 
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If 𝑝 ≥ 1 then 

(∑|𝑥𝑖 + 𝑦𝑖|
𝑝)

1
𝑝
≤ (∑|𝑥𝑖|

𝑝)

1
𝑝
+ (∑|𝑦𝑖|

𝑝)

1
𝑝

 

 

Example: 

Let 𝑋 = 𝑅𝑛, be a vector space over 𝑅 and ‖. ‖1, ‖. ‖2, ‖. ‖3 and 

‖. ‖4: 𝑅
𝑛 → 𝑅 define as follows. 

∀𝑥 ∈ 𝑅𝑛, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  

1- ‖. ‖1 = (∑ 𝑥𝑖
2𝑛

𝑖=1 )
1

2 

2- ‖. ‖2 = ∑ |𝑥𝑖|
𝑛
𝑖=1   

3- ‖. ‖3 = 𝑚𝑎𝑥{|𝑥1|, |𝑥2|, … , |𝑥𝑛|} 

4- ‖. ‖4 = (∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝                                                                             

show that ‖. ‖𝑖  are normed space on 𝑅𝑛 or not 

Solution 

‖. ‖1   

1- Since 𝑥𝑖
2 ≥ 0, ∀𝑖 = 0,1,2, … , 𝑛 → ∑𝑥𝑖

2 ≥ 0 → (∑𝑥𝑖
2)

1

2 ≥

0   then ‖𝑥‖ ≥ 0 

2- Let ‖𝑥‖ = 0 

↔ (∑𝑥𝑖
2)

1
2
= 0 

↔∑𝑥𝑖
2 = 0 

↔ 𝑥𝑖
2 = 0 

↔ 𝑥𝑖 = 0 
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↔ 𝑥 = 0 

 

3- Let 𝑥 ∈ 𝑅𝑛, 𝜆 ∈ 𝑅  

𝜆𝑥 = 𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝜆𝑥1, 𝜆𝑥2, … , 𝜆𝑥𝑛) 

‖𝜆𝑥‖ = (∑(𝜆𝑥𝑖)
2

𝑛

𝑖=1

)

1
2

= |𝜆| (∑𝑥𝑖
2

𝑛

𝑖=1

)

1
2

= |𝜆|‖𝑥‖   

4- Let 𝑥, 𝑦 ∈ 𝑅𝑛 

𝑥 + 𝑦 = (𝑥1, 𝑥2, … , 𝑥𝑛) + (𝑦1, 𝑦2, … , 𝑦𝑛)

= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛) 

‖𝑥 + 𝑦‖ = (∑(𝑥𝑖 + 𝑦𝑖)
2

𝑛

𝑖=1

)

1
2

 

By using minkowsk's inquelity  

≤ (∑𝑥𝑖
2

𝑛

𝑖=1

)

1
2

+ (∑𝑦𝑖
2

𝑛

𝑖=1

)

1
2

 

= ‖𝑥‖ + ‖𝑦‖ 

→ ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 

 

 

 

‖. ‖2   

1- Since |𝑥𝑖| ≥ 0, ∀𝑖 = 0,1,2, … , 𝑛  
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→ ∑|𝑥𝑖| ≥ 0 → ‖𝑥‖ ≥ 0   

2- Let ‖𝑥‖ = 0 

↔∑|𝑥𝑖|

𝑛

𝑖=1

= 0 

↔ |𝑥𝑖| = 0 

↔ 𝑥𝑖 = 0 

↔ 𝑥 = 0 

 

3- Let 𝑥 ∈ 𝑅𝑛, 𝜆 ∈ 𝑅  

𝜆𝑥 = 𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝜆𝑥1, 𝜆𝑥2, … , 𝜆𝑥𝑛) 

‖𝜆𝑥‖ =∑|𝜆𝑥𝑖|

𝑛

𝑖=1

=∑|𝜆||𝑥𝑖|

𝑛

𝑖=1

= |𝜆|∑|𝑥𝑖|

𝑛

𝑖=1

= |𝜆|‖𝑥‖  

4- Let 𝑥, 𝑦 ∈ 𝑅𝑛 

𝑥 + 𝑦 = (𝑥1, 𝑥2, … , 𝑥𝑛) + (𝑦1, 𝑦2, … , 𝑦𝑛)

= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛) 

‖𝑥 + 𝑦‖ =∑|𝑥𝑖 + 𝑦𝑖|

𝑛

𝑖=1

≤∑(|𝑥𝑖| + |𝑦𝑖|)

𝑛

𝑖=1

≤∑|𝑥𝑖| +∑|𝑦𝑖|

𝑛

𝑖=1

= ‖𝑥‖ + ‖𝑦‖

𝑛

𝑖=1

 

→ ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 
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‖. ‖3   

1- Since |𝑥𝑖| ≥ 0, ∀𝑖 = 0,1,2, … , 𝑛  

→ 𝑚𝑎𝑥 {|𝑥1|, |𝑥2|, … , |𝑥𝑛|} ≥ 0 → ‖𝑥‖ ≥ 0   

2- Let ‖𝑥‖ = 0 

↔ 𝑚𝑎𝑥 {|𝑥1|, |𝑥2|, … , |𝑥𝑛|} = 0 

↔ |𝑥𝑖| = 0 

↔ 𝑥𝑖 = 0 

↔ 𝑥 = 0 

 

3- Let 𝑥 ∈ 𝑅𝑛, 𝜆 ∈ 𝑅  

𝜆𝑥 = 𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝜆𝑥1, 𝜆𝑥2, … , 𝜆𝑥𝑛) 

‖𝜆𝑥‖ = 𝑚𝑎𝑥 {|𝜆𝑥1|, |𝜆𝑥2|, … , |𝜆𝑥𝑛|}

= |𝜆|𝑚𝑎𝑥 {|𝑥1|, |𝑥2|, … , |𝑥𝑛|} = |𝜆|‖𝑥‖  

4- Let 𝑥, 𝑦 ∈ 𝑅𝑛 

𝑥 + 𝑦 = (𝑥1, 𝑥2, … , 𝑥𝑛) + (𝑦1, 𝑦2, … , 𝑦𝑛)

= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛) 

‖𝑥 + 𝑦‖  

= 𝑚𝑎𝑥{|𝑥1 + 𝑦1|, |𝑥2 + 𝑦2|, … , |𝑥𝑛 + 𝑦𝑛|} ≤ 𝑚𝑎𝑥{|𝑥1| +

|𝑦1|, |𝑥2| + |𝑦2|, … , |𝑥𝑛| + |𝑦𝑛|}  

≤ 𝑚𝑎𝑥{|𝑥1|, |𝑥2|, … , |𝑥𝑛|} + 

𝑚𝑎𝑥 {|𝑦1|, |𝑦2|, … , |𝑦𝑛|} 

= ‖𝑥‖ + ‖𝑦‖ 
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 → ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 

 

‖. ‖4    H.W 

 

Remark: 

Every subspace of normed space is a normed space  

Theorem: 

Let 𝑋 be a normed space then 

1- ‖0‖ = 0 

2- ‖−𝑥‖ = ‖𝑥‖, ∀𝑥 ∈ 𝑋 

3- ‖𝑥 − 𝑦‖ = ‖𝑦 − 𝑥‖, ∀𝑥, 𝑦 ∈ 𝑋 

4- |‖𝑥‖ + ‖𝑦‖|  ≤ ‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑋 

Proof 

1-,2-,3-   H.W 

4-𝑥 = (𝑥 − 𝑦) + 𝑦 

‖𝑥‖ = ‖(𝑥 − 𝑦) + 𝑦‖ ≤ ‖𝑥 − 𝑦‖ + ‖𝑦‖ 

→ ‖𝑥‖ − ‖𝑦‖ ≤ ‖𝑥 − 𝑦‖…(1) 

𝑦 = (𝑦 − 𝑥) + 𝑥   

‖𝑦‖ = ‖(𝑦 − 𝑥) + 𝑥‖ ≤ ‖𝑦 − 𝑥‖ + ‖𝑥‖ 

→ ‖𝑦‖ − ‖𝑥‖ ≤ ‖𝑦 − 𝑥‖ = ‖𝑥 − 𝑦‖ 

→ ‖𝑦‖ − ‖𝑥‖ ≤ ‖𝑥 − 𝑦‖   (∗ −1) 

−(‖𝑦‖ − ‖𝑥‖) ≥ −‖𝑥 − 𝑦‖ 

→ ‖𝑥‖ − ‖𝑦‖ ≥ −‖𝑥 − 𝑦‖…(2) 

 

From (1) and (2) we get 
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-‖𝑥 − 𝑦‖ ≤ ‖𝑥‖ − ‖𝑦‖ ≤ ‖𝑥 − 𝑦‖ 

→ |‖𝑥‖ + ‖𝑦‖|  ≤ ‖𝑥 − 𝑦‖ 

 

 

Example: 

Let 1 ≤ 𝑃 ≤ ∞ and ‖. ‖: ℓ𝑃 → 𝑅 such that 𝑥 ∈ ℓ𝑃, 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛, … ) then ‖. ‖  is a normed on ℓ𝑃 where 

‖. ‖ = (∑|𝑥𝑖|
𝑝)

1

𝑝  

 

Solution 

1- Let 𝑥 ∈ ℓ𝑃 → 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛, … )                       ‖𝑥‖ =

(∑|𝑥𝑖|
𝑝)

1

𝑝                                                                                                         

∴ |𝑥𝑖| ≥ 0, ∀𝑖 → |𝑥𝑖|
𝑝 ≥ 0, ∀𝑖 

→ ∑|𝑥𝑖|
𝑝 ≥ 0 → (∑|𝑥𝑖|

𝑝)
1

𝑝 ≥ 0                                     then 

‖𝑥‖ ≥ 0 

2- Let 𝑥 ∈ ℓ𝑝 , 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛, … )                                                     

if ‖𝑥‖ = 0 → (∑|𝑥𝑖|
𝑝)

1

𝑝 = 0 

→∑|𝑥𝑖|
𝑝 = 0 → |𝑥𝑖|

𝑝 = 0 → |𝑥𝑖| = 0 

→ 𝑥𝑖 = 0, ∀𝑖 → 𝑥 = 0 

If 𝑥 = 0 → 𝑥 = (0,0, … ,0, … ) → 𝑥𝑖 = 0, ∀𝑖 → |𝑥𝑖| = 0 →

|𝑥𝑖|
𝑝 = 0 → ∑|𝑥𝑖|

𝑝 = 0 → (∑|𝑥𝑖|
𝑝)

1

𝑝 = 0 → ‖𝑥‖ = 0 

3- Let 𝑥 ∈ ℓ𝑝, 𝜆 ∈ 𝑅  

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛, … ) 
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‖𝜆𝑥‖ = ‖𝜆(𝑥1, 𝑥2, … , 𝑥𝑛, … )‖ = ‖𝜆𝑥1, 𝜆𝑥2, … , 𝜆𝑥𝑛, … ‖

= (∑|𝜆𝑥𝑖|
𝑝)

1
𝑝
= (∑|𝜆|𝑝|𝑥𝑖|

𝑝)

1
𝑝

= (|𝜆|𝑝∑|𝑥𝑖|
𝑝)

1
𝑝
= (|𝜆|𝑝)

1
𝑝 (∑|𝑥𝑖|

𝑝)

1
𝑝

= |𝜆| (∑|𝑥𝑖|
𝑝)

1
𝑝
= |𝜆|‖𝑥‖ 

4- Let 𝑥, 𝑦 ∈ ℓ𝑝, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛, … ), 𝑦 =

(𝑦1, 𝑦2, … , 𝑦𝑛, … ) 

‖𝑥 + 𝑦‖ = ‖𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛 , … ‖

= (∑|𝑥𝑖 + 𝑦𝑖|
𝑝)

1
𝑝
≤ (∑|𝑥𝑖|

𝑝)

1
𝑝
+ (∑|𝑦𝑖|

𝑝)

1
𝑝

= ‖𝑥‖ + ‖𝑦‖ 

 

Example: Let ‖. ‖: ℓ∞ → 𝑅 such that ‖𝑥‖ = 𝑠𝑢𝑝|𝑥𝑖|, then ‖. ‖ 

is a normed space    H.W 

Example: 

Let 𝑋 = 𝐶[0,1] → 𝑅 be a function define as ‖𝑓‖ =

𝑚𝑎𝑥{|𝑓(𝑥)|, 0 ≤ 𝑥 ≤ 1} , ∀𝑓 ∈ 𝑋 

Show that  ‖𝑓‖ norm on 𝑋 

Solution: 

1- Since |𝑓(𝑥)| ≥ 0, ∀𝑥 ∈ [0,1] → ‖𝑓‖ ≥ 0 

2- Let ‖𝑓‖ = 0 ↔ 𝑚𝑎𝑥{|𝑓(𝑥)|, 0 ≤ 𝑥 ≤ 1} ↔ |𝑓(𝑥)| =

0, ∀𝑥 ∈ [0,1] ↔ 𝑓(𝑥) = 0, ∀𝑥 ∈ [0,1] ↔ 𝑓 = 0 

3- Let 𝑓 ∈ 𝑋, 𝜆 ∈ 𝑅                                                                             
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‖𝜆𝑓‖ = 𝑚𝑎𝑥{|(𝜆𝑓)(𝑥)|, 0 ≤ 𝑥 ≤ 1}

=𝑚𝑎𝑥{|𝜆||𝑓(𝑥)|, 0 ≤ 𝑥 ≤ 1}

= |𝜆|𝑚𝑎𝑥{|𝑓(𝑥)|, 0 ≤ 𝑥 ≤ 1} = |𝜆|‖𝑓‖ 

4- Let 𝑓, 𝑔 ∈ 𝑋 

‖𝑓 + 𝑔‖ = 𝑚𝑎𝑥{|(𝑓 + 𝑔)(𝑥)|, 0 ≤ 𝑥 ≤ 1}

= 𝑚𝑎𝑥{|𝑓(𝑥) + 𝑔(𝑥)|, 0 ≤ 𝑥 ≤ 1}

≤ 𝑚𝑎𝑥{|𝑓(𝑥)| + |𝑔(𝑥)|, 0 ≤ 𝑥 ≤ 1} 

≤ 𝑚𝑎𝑥{|𝑓(𝑥)|, 0 ≤ 𝑥 ≤ 1} + 𝑚𝑎𝑥{|𝑔(𝑥)|, 0 ≤ 𝑥 ≤ 1}

= ‖𝑓‖ + ‖𝑔‖ 

 

 

Example: 

  Let 𝑋 = 𝐶[0,1] and ‖. ‖: 𝑋 → 𝑅 be a function define as ‖𝑓‖ =

∫ |𝑓(𝑥)|𝑑𝑥
1

0
, ∀𝑓 ∈ 𝑋 

Show that  ‖𝑓‖ norm on 𝑋 

H.W 

Theorem: 

Every normed vector space is a metric space but the converse is 

not true in general 

Proof 

Let (𝑋, ‖. ‖) be a normed space defined 𝑑: 𝑋 × 𝑋 → 𝑅 by  

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, 𝑥, 𝑦 ∈ 𝑋 

1- Since 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋   → 𝑑(𝑥, 𝑦) ≥ 0 
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2- If 𝑥 = 𝑦 → 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑥‖ = 0                             if 

 𝑑(𝑥, 𝑦) = 0 → ‖𝑥 − 𝑦‖ = 0 → 𝑥 − 𝑦 = 0 → 𝑥 = 𝑦 

3- ∀𝑥, 𝑦 ∈ 𝑋                                                                             

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = ‖𝑦 − 𝑥‖ = 𝑑(𝑦, 𝑥) 

4- Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 

𝑥 − 𝑦 = 𝑥 − 𝑧 + 𝑧 − 𝑦 

𝑑(𝑥, 𝑦) =  ‖𝑥 − 𝑦‖ = ‖𝑥 − 𝑧 + 𝑧 − 𝑦‖

≤ ‖𝑥 − 𝑧‖ + ‖𝑧 − 𝑦‖ = 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 

 → 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 

Then we get normed space is metric space  

The converse is H..W 

 

 

 

 

Definition: 

Let 𝑋, 𝑌 be the set, the Cartesian product of 𝑋, 𝑌 denoted by 

𝑋 × 𝑌 and defined as follows : 

𝑋 × 𝑌 = {(𝑥, 𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} 

Then 𝑋 × 𝑌 ≠ 𝑌 × 𝑋 and if 𝑋 ≠ ∅ and 𝑌 ≠ ∅ then 𝑋 × 𝑌 ≠ ∅ 

- If 𝑋, 𝑌 are two vectors over 𝐹 then we can defined 

∀(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌 

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) and 𝜆(𝑥1, 𝑦1) =

(𝜆𝑥1, 𝜆𝑦1), ∀𝜆 ∈ 𝐹 
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Example: 

If (𝑋, ‖. ‖1) and (𝑌, ‖. ‖2) are two normed spaces then 

(𝑋 × 𝑌, ‖. ‖) is a normed space such that ‖(𝑥, 𝑦)‖ =

𝑚𝑎𝑥{‖𝑥‖1, ‖𝑦‖2} , ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌 

Solution 

1- Since ‖𝑥‖1 ≥ 0, ∀𝑥 ∈ 𝑋 and ‖𝑦‖2 ≥ 0, ∀𝑦 ∈ 𝑌 →

𝑚𝑎𝑥{‖𝑥‖1, ‖𝑦‖2} ≥ 0                                                        →

‖(𝑥, 𝑦)‖ ≥ 0 

2- ‖(𝑥, 𝑦)‖ = 0 ↔ 𝑚𝑎𝑥{‖𝑥‖1, ‖𝑦‖2} = 0 ↔ ‖𝑥‖1 =

0, ‖𝑦‖2 = 0 ↔ 𝑥 = 0, 𝑦 = 0 ↔ (𝑥, 𝑦) = 0  

3- Let (𝑥, 𝑦) ∈ 𝑋 × 𝑌, 𝜆 ∈ 𝐹                                                      

‖𝜆(𝑥, 𝑦)‖ = 𝑚𝑎𝑥{‖𝜆𝑥‖1, ‖𝜆𝑦‖2} =

|𝜆|𝑚𝑎𝑥{‖𝑥‖1, ‖𝑦‖2} = |𝜆|‖(𝑥, 𝑦)‖ 

4- Let (𝑥, 𝑦), (𝑧, 𝑤) ∈ 𝑋 × 𝑌 

(𝑥, 𝑦) + (𝑧, 𝑤) = (𝑥 + 𝑧, 𝑦 + 𝑤) 

‖(𝑥, 𝑦) + (𝑧, 𝑤)‖ = 𝑚𝑎𝑥{‖𝑥 + 𝑧‖1, ‖𝑦 + 𝑤‖2}

≤ 𝑚𝑎𝑥{‖𝑥‖1 + ‖𝑧‖1, ‖𝑦‖2 + ‖𝑤‖2}  

≤ 𝑚𝑎𝑥{‖𝑥‖1, ‖𝑦‖2} + 𝑚𝑎𝑥{‖𝑧‖1, ‖𝑤‖2}

= ‖(𝑥, 𝑦)‖ + ‖(𝑧, 𝑤)‖ 

 

 

 
 

Definition: 

Let 𝑋 be a normed space and let 𝑥0 ∈ 𝑋, if 𝑟 is a positive 

real number then the set {𝑥 ∈ 𝑋: ‖𝑥 − 𝑥0‖ < 𝑟} is a called 
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open ball and we called 𝑥0 ball center , 𝑟 ball radius and 

we denoted the open ball with center 𝑥0 and radius 𝑟 by 

𝐵𝑟(𝑥0) then we get  

𝐵𝑟(𝑥0) = {𝑥 ∈ 𝑋; ‖𝑥 − 𝑥0‖ < 𝑟} 

 

Definition: 

Let 𝑋 be a normed space and let 𝑥0 ∈ 𝑋, if 𝑟 is a positive 

real number then the set {𝑥 ∈ 𝑋: ‖𝑥 − 𝑥0‖ ≤ 𝑟} is a called 

closed ball and we called 𝑥0 ball center , 𝑟 ball radius and 

we denoted the closed ball with center 𝑥0 and radius 𝑟 by 

�̅�𝑟(𝑥0) then we get  

�̅�𝑟(𝑥0) = {𝑥 ∈ 𝑋; ‖𝑥 − 𝑥0‖ ≤ 𝑟} 

 

Remark: 

1- In the special case  

𝐵1(0) = {𝑥 ∈ 𝑋; ‖𝑥‖ < 1} is called open uint and we 

called the set  

�̅�1(0) = {𝑥 ∈ 𝑋; ‖𝑥‖ ≤ 𝑟} closed uint  

2- We can prove that  

a- 𝐵𝑟(𝑥0) = 𝑥0 + 𝑟𝐵1(0) 

b- �̅�1(0) = 𝑥0 + 𝑟�̅�1(0) 

 

Example: 

If 𝑋 is a normed space then the open ball and closed ball is a 

convex set 

Solution 
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Let 𝐵𝑟(𝑥0) is an open ball with center 𝑥0 and radius 𝑟 to show 

that 𝐵𝑟(𝑥0) is a convex set  

Let 𝑥, 𝑦 ∈ 𝐵𝑟(𝑥0), 𝜆 ∈ 𝐹, 0 ≤ 𝜆 ≤ 1 

Since 𝑥 ∈ 𝐵𝑟(𝑥0) → ‖𝑥 − 𝑥0‖ < 𝑟 and  

𝑦 ∈ 𝐵𝑟(𝑥0) → ‖𝑦 − 𝑥0‖ < 𝑟 

Now, 𝜆𝑥 + (1 − 𝜆)𝑦 − 𝑥0 = 𝜆𝑥 + (1 − 𝜆)𝑦−𝑥0 + 𝜆𝑥0 −𝜆𝑥0 

= 𝜆(𝑥 − 𝑥0) + (1 − 𝜆)𝑦 − (1 − 𝜆)𝑥0

= 𝜆(𝑥 − 𝑥0) + (1 − 𝜆)(𝑦 − 𝑥0)  

‖𝜆𝑥 + (1 − 𝜆)𝑦 − 𝑥0‖ = ‖𝜆(𝑥 − 𝑥0) + (1 − 𝜆)(𝑦 − 𝑥0)‖

≤ |𝜆|‖𝑥 − 𝑥0‖ + |1 − 𝜆|‖𝑦 − 𝑥0‖ < 𝜆𝑟 + (1 − 𝜆)𝑟

= 𝜆𝑟 + 𝑟 − 𝜆𝑟 = 𝑟 

∴ ‖𝜆𝑥 + (1 − 𝜆)𝑦 − 𝑥0‖ < 𝑟  

→ 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐵𝑟(𝑥0) 

𝐵𝑟(𝑥0) is a convex set  

𝐵𝑟(𝑥0) H.W 

 

Definition: 

Let 𝐴 be a subset of a normed space 𝑋, we say that 𝐴 is an open 

set in 𝑋 if , ∀𝑥 ∈ 𝐴∃𝑟 > 0 such that 𝐵𝑟(𝑥0) ⊆ 𝐴 

 

 

Remark: 
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In a normed space we can prove that  

1- Every open ball is an open set 

2- Each ∅, 𝑋 are open set 

3- The union of finite or infinite open set is open set  

4- The intersection of finite open set is open set 

5- If 𝐴 ⊆ 𝑋 then 𝐴 is open set iff a equal to union of open set  

 

Definition: 

Let 𝐴 be a subset of a normed space 𝑋, we say that 𝑥 ∈ 𝐴 is 

interior point in  𝐴 if , ∃𝑟 > 0 such that 𝐵𝑟(𝑧) ⊆ 𝐴 

The set of all element is interior points denoted by 𝑖𝑛𝑡(𝐴) or 𝐴° 

 

Remark: 

 we can prove that  

1- 𝑖𝑛𝑡(𝐴) ⊆ 𝐴 

2- 𝑖𝑛𝑡(𝐴) open set 

3-    𝐴 open set iff  𝑖𝑛𝑡(𝐴) = 𝐴  

4- 𝑖𝑛𝑡(𝑖𝑛𝑡(𝐴)) = 𝑖𝑛𝑡(𝐴) 

5- 𝑖𝑛𝑡(𝐴) =∪ {𝑀𝑖 , 𝑀𝑖 open set 𝑀𝑖 ⊆ 𝐴}                    then 

𝑖𝑛𝑡(𝐴) largest open set contain 𝐴 

6- 𝑖𝑛𝑡(𝐴) = {𝑥 ∈ 𝐴: ∃𝑟 > 0, 𝑥 + 𝑟𝐵1(0) ⊆ 𝐴} 

 

Definition: 
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Let 𝐴 be a subset of a normed space 𝑋, we say that 𝐴 is an open 

set in 𝑋 if complement of 𝐴 is open set in 𝑋  

  

Remark: 

In a normed space we can prove that  

1- Every closed ball is an closed set 

2- Each ∅, 𝑋 are closed set 

3- The union of finite closed set is closed set  

4- The intersection of finite or infinite closed set is closed set 

 

Theorem: 

 If 𝑋 normed space, then every set contain only one element is a 

closed set  

Proof 

Let 𝐴 = {𝑥} we prove that 𝐴 closed set  

i.e\ to show that 𝐴𝑐 is open set  

let 𝑦 ∈ 𝐴𝑐 → 𝑦 ∉ 𝐴, let 𝑥 ∈ 𝐴  

‖𝑥 − 𝑦‖ > 0, 𝑥 ≠ 𝑦  

Take  ‖𝑥 − 𝑦‖ = 𝑟 , 𝑟 > 0  

Since ‖𝑥 − 𝑦‖ = 𝑟 → ‖𝑥 − 𝑦‖ ≮ 𝑟 → 𝑥 ∉ 𝐵𝑟(𝑦) 

→ 𝐴 ∩ 𝐵𝑟(𝑦) = ∅  

→ 𝐵𝑟(𝑦) ⊆ 𝐴
𝑐   
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→ 𝐴𝑐  open set  

→ 𝐴 closed  set  

 

Lemma: 

Every finite subset of a normed space is closed set  

 

Proof 

Let 𝐴 be a sub set , 𝐴 finite of a normed space in 𝑋  

If 𝐴 = ∅ → 𝐴 closed set  (by remark)  

If 𝐴 ≠ ∅ → ∃𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋 such that  

𝐴 = {𝑥1, 𝑥2, … , 𝑥𝑛} since 𝑥𝑖 closed set ∀𝑖 = 1,… 𝑛  → 𝐴 =

⋃ 𝑥𝑖
𝑛
𝑖=1  closed set   (by remark) 

 

Definition: 

Let 𝐴 be a subset of a normed space, say the point 𝑥 ∈ 𝑋  

accumulution point or limit point of a set 𝐴 iff ∀ open set 𝐺 in 𝑋 

contain 𝑥 other point 𝑦 𝑦 ≠ 𝑥, 𝑦 𝑖𝑛 𝐴 or   if 𝐺 open set in 𝑋 and 

𝑥 ∈ 𝐺 then 𝐴 ∩ (𝐺 {𝑥}⁄ ) ≠ ∅ 

The set of all limt point of 𝐴 denoted by 𝐴′  

 

Definition: 
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Let 𝐴 be a subset of a normed space 𝑋, the set 𝐴 ∪ 𝐴′ is called 

closure of 𝐴 and denoted by 𝐴 ̅ (i.e\ �̅� = 𝐴 ∪ 𝐴′  

Remark: 

By definition we can prove  

1- 𝐴 ⊆ �̅�, 𝐴′ ⊆ �̅� 

2- 𝑥 ∈ �̅� iff ∀𝑟 > 0 ∃𝑦 ∈ 𝐴 ∋ ‖𝑥 − 𝑦‖ < 𝑟 

3- �̅� closed set 

4- 𝐴 close set iff 𝐴 = �̅�  

5- �̅̅� = �̅� 

6- �̅� =∩ {𝑀𝑖  \𝑀𝑖closed set , 𝐴 ⊆ 𝑀𝑖}  �̅� smallest closed set 

contain 𝐴 

7- �̅� = ∩
𝑟>0

( 𝐴 + 𝑟𝐵1̅̅ ̅ (0))   

 

Theorem: 

If 𝑀  is a subspace of a normed space then �̅� is subspace 
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Definition: 

Let 𝑋 be a non- empty set, then the function 𝑓:𝑁 → 𝑋 such that 

∀𝑛 ∈ 𝑁 ∃ only one element such that 𝑓(𝑛) = 𝑥𝑛 is called a 

sequence in 𝑋  

We denoted of 𝑓 by {𝑥𝑛} and id said to be 

 𝑛 − terme of sequence  

The range of sequence {𝑥𝑛} is set {𝑥𝑛, 𝑛 ∈ 𝑁}  

 

If 𝑥𝑛 = 2(−1)
𝑛−1, 𝑛 ∈ 𝑁 is a sequence define on 𝑅 then {𝑥𝑛} =

{2(−1)𝑛−1} = {2,−2,2, −2, … } is a sequence  

But {𝑥𝑛, 𝑛 ∈ 𝑁} = {2,−2} is a range  

Definition: 

Let {𝑥𝑛} be a sequence in a normed space 𝑋 then {𝑥𝑛} is said to 

be converge in 𝑋 if there exist 𝑥 ∈ 𝑋 such that for any 𝜖 >

0, ∃𝑘 ∈ 𝑍+ such that 

‖𝑥𝑛 − 𝑥‖ < 𝜖, ∀𝑛 > 𝑘    

𝑥 is said to be a convergent point  

𝑥𝑛 → 𝑥 ↔ ‖𝑥𝑛 − 𝑥‖ → 0 
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If  𝑥𝑛 is non – convergent then said to  be divergent  

 

Theorem: 

If the sequence {𝑥𝑛} is a convergent in a normed space 𝑥 then 

the convergent point is unique  

 

Proof 

Let 𝑥𝑛 → 𝑥, 𝑎𝑛𝑑 𝑥𝑛 → 𝑦 such that 𝑥 ≠ 𝑦 

And let ‖𝑥 − 𝑦‖ = 𝜖 → 𝜖 > 0 

Since 𝑥𝑛 → 𝑥 

⇒ ∃𝑘1 ∈ 𝑍
+ such that ‖𝑥𝑛 − 𝑥‖ <

𝜖

2
, ∀𝑛 > 𝑘1 

And since, 𝑥𝑛 → 𝑦 

⇒ ∃𝑘2 ∈ 𝑍
+ such that ‖𝑥𝑛 − 𝑦‖ <

𝜖

2
, ∀𝑛 > 𝑘2 

Take 𝑘 = 𝑚𝑎𝑥{𝑘1, 𝑘2}then  

‖𝑥𝑛 − 𝑥‖ <
𝜖

2
, ‖𝑥𝑛 − 𝑦‖ <

𝜖

2
, ∀𝑛 > 𝑘 

𝜖 = ‖𝑥 − 𝑦‖ = ‖𝑥 + 𝑥𝑛 − 𝑥𝑛 − 𝑦‖ = ‖(𝑥 − 𝑥𝑛) + (𝑥𝑛 − 𝑦)‖

= ‖−(𝑥𝑛 − 𝑥) + (𝑥𝑛 − 𝑦)‖

≤ ‖𝑥𝑛 − 𝑥‖ + ‖𝑥𝑛 − 𝑦‖ <
𝜖

2
+
𝜖

2
= 𝜖 

⇒ 𝜖 < 𝜖  (cont #) 

⇒ 𝑥 = 𝑦 
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Theorem: 

Let {𝑥𝑛}, {𝑦𝑛} are sequence in a normed space 𝑋 such that 𝑥𝑛 →

𝑥, 𝑦𝑛 → 𝑦 then  

1- 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦 

2- 𝜆𝑥𝑛 → 𝜆𝑥 

3- ‖𝑥𝑛‖ → ‖𝑥‖ 

4- ‖𝑥𝑛 − 𝑦𝑛‖ → ‖𝑥 − 𝑦‖ 

 

Proof 

1-  ‖(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦)‖ = ‖(𝑥𝑛 − 𝑥) + (𝑦𝑛 − 𝑦)‖ ≤

‖𝑥𝑛 − 𝑥‖ + ‖𝑥𝑛 − 𝑦‖                                                since  

𝑥𝑛 → 𝑥 ⇒ ‖𝑥𝑛 − 𝑥‖ → 0 

And  

𝑦𝑛 → 𝑦 ⇒ ‖𝑦𝑛 − 𝑦‖ → 0 

Then  

‖𝑥𝑛 − 𝑥‖ + ‖𝑥𝑛 − 𝑦‖ → 0 

⇒ ‖(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦)‖ → 0 

Then 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦 

2- H.W 

3- Since |‖𝑥𝑛‖ − ‖𝑥‖| ≤ ‖𝑥𝑛 − 𝑥‖ and ‖𝑥𝑛 − 𝑥‖ → 0 

|‖𝑥𝑛‖ − ‖𝑥‖| ≤ ‖𝑥𝑛 − 𝑥‖ → 0 

|‖𝑥𝑛‖ − ‖𝑥‖| → 0 

⇒ ‖𝑥𝑛‖ → ‖𝑥‖ 
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4- |‖𝑥𝑛 − 𝑦𝑛‖ − ‖𝑥 − 𝑦‖| ≤ ‖(𝑥𝑛 − 𝑦𝑛) − (𝑥 − 𝑦)‖ ≤

‖𝑥𝑛 − 𝑥‖ + ‖𝑥𝑛 − 𝑦‖  

And  

𝑥𝑛 → 𝑥 ⇒ ‖𝑥𝑛 − 𝑥‖ → 0 

𝑦𝑛 → 𝑦 ⇒ ‖𝑦𝑛 − 𝑦‖ → 0 

⇒ ‖𝑥𝑛 − 𝑥‖ + ‖𝑥𝑛 − 𝑦‖ → 0 

⇒ |‖𝑥𝑛 − 𝑦𝑛‖ − ‖𝑥 − 𝑦‖| → 0 

⇒ ‖𝑥𝑛 − 𝑦𝑛‖ → ‖𝑥 − 𝑦‖ 

 

Definition: 

Let {𝑥𝑛}is a sequence in a normed space 𝑋 we say that {𝑥𝑛} 

is a coushy sequence in 𝑋 if ∀𝜖 > 0, ∃𝑘 ∈ 𝑍+ such that 

 ‖𝑥𝑛 − 𝑥𝑚‖ < 𝜖, ∀𝑛,𝑚 > 𝑘 

 

Theorem: 

Every convergent sequence is a caushy sequence  

Proof 

Let {𝑥𝑛} is a converg sequence to 𝑥  

⇒ 𝑥𝑛 → 𝑥  

Let 𝜖 > 0, since 𝑥𝑛 → 𝑥 and 𝜖 > 0 →
𝜖

2
> 0 

⇒ ∃𝑘 ∈ 𝑍+ such that ‖𝑥𝑛 − 𝑥‖ < 𝜖, ∀𝑛 > 𝑘  

𝑖𝑓 𝑛,𝑚 > 𝑘  
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⇒ ‖𝑥𝑛 − 𝑥𝑚‖ = ‖𝑥𝑛 − 𝑥𝑚 + 𝑥 − 𝑥‖

= ‖(𝑥𝑛 − 𝑥) + (𝑥𝑚 − 𝑥)‖

≤ ‖𝑥𝑛 − 𝑥‖ + ‖𝑥𝑚 − 𝑥‖ <
𝜖

2
+
𝜖

2
= 𝜖 

⇒ ‖𝑥𝑛 − 𝑥𝑚‖ < 𝜖, ∀𝑛,𝑚 > 𝑘, 𝑘 ∈ 𝑍+ 

⇒ {𝑥𝑛} is a coushy sequen 

 

Definition: 

Let {𝑥𝑛} be a sequence in a normed space 𝑋 we say that 

{𝑥𝑛} is a bounded sequence if there exsists a positive number 

𝑀 such that ‖𝑥𝑛‖ ≤ 𝑀,∀𝑛 ∈ 𝑍
+ 

 

Theorem: 

If {𝑥𝑛} is a coushy sequence in a normed space 𝑋 then {𝑥𝑛} is 

a bounded  

Proof 

Let 𝜖 = 1 , 𝜖 > 0  

Since {𝑥𝑛} is a coushy sequence 

⇒ ∃𝑘 ∈ 𝑍+ ∋ ‖𝑥𝑛 − 𝑥𝑚‖ < 1, ∀𝑛,𝑚 > 𝑘 

Let 𝑚 = 𝑛 + 1 

⇒ ‖𝑥𝑛 − 𝑥𝑛+1‖ < 1, ∀𝑛 > 𝑘  

Since  

|‖𝑥𝑛‖ − ‖𝑥𝑛+1‖| < ‖𝑥𝑛 − 𝑥𝑚‖ < 1  



76 
 

⇒ ‖𝑥𝑛‖ − ‖𝑥𝑛+1‖ < 1, ∀𝑛 > 𝑘  

⇒ ‖𝑥𝑛‖ < 1+⇒ ‖𝑥𝑛+1‖, ∀𝑛 > 𝑘   

Take 𝑀 = 𝑚𝑎𝑥{‖𝑥1‖, ‖𝑥2‖,… , ‖𝑥𝑛‖, ‖𝑥𝑛+1‖, ‖𝑥𝑛+1‖ + 1} 

⇒ ‖𝑥𝑛‖ ≤ 𝑀, ∀𝑛 ∈ 𝑍  

 

 

 

 

Corollary: 

 Every converg sequence in a normed space 𝑋 is a bounded 

sequence  

 

 

 

Definition: 

We say that a normed space 𝑋 is a complete space iff for any 

coushy sequence in 𝑋 is a converge sequence in 𝑋 
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A complete normed space is said to be banach space  

 

Example: 

A space 𝐹𝑛 with norm ‖𝑥‖ = (∑ |𝑥|2𝑛
𝑖=1 )

1

2, 

 ∀𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  ∈ 𝐹
𝑛  is a banach space  

  

Solution: 

1- 𝐹𝑛 normed space   (proof???) 

2- Let {𝑥𝑛} is a cauchy sequence in 𝐹𝑛  

 ⇒ 𝑥𝑛 ∈ 𝐹
𝑛 ⇒ 𝑥𝑛 = (𝑥1𝑛, 𝑥2𝑛, … , 𝑥𝑖𝑛)  

Let 𝜖 > 0 , ∃𝑘 ∈ 𝑍+ such that  

‖𝑥𝑚 − 𝑥𝐼‖ < 𝜖, ∀𝑚, 𝐼 > 𝑘  

‖𝑥𝑚 − 𝑥𝐼‖
2 < 𝜖2  

∵ 𝑥𝑚 − 𝑥𝐼 = (𝑥1𝑚 − 𝑥1𝐼 , 𝑥2𝑚 − 𝑥2𝐼 , … , 𝑥𝑖𝑚 − 𝑥𝑖𝐼)  

⇒ ‖𝑥𝑚 − 𝑥𝐼‖ =∑|𝑥𝑖𝑚 − 𝑥𝑖𝐼|
2  

Since  

‖𝑥𝑚 − 𝑥𝐼‖
2 < 𝜖2, ∀𝑚, 𝐼 > 𝑘  

 

⇒ ‖𝑥𝑚 − 𝑥𝐼‖ < 𝜖, ∀𝑚, 𝐼 > 𝑘  

Then for any 𝑖 ∈ 𝐼, {𝑥𝑖𝑚}is a cauchy sequence in 𝐹  

Since 𝐹 is complete ( because 𝐹 either 𝑅 or 𝐶) 



78 
 

⇒ for any ‖𝑥𝑖𝑚 − 𝑥𝑖𝐼‖ <
𝜖

√𝑛
  

Put 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ⇒ 𝑥 ∈ 𝐹𝑛 

Let 𝜖 > 0∃𝑘 ∈ 𝑍+ for any 𝑚 > 𝑘 we get  

‖𝑥𝑛 − 𝑥‖
2 =∑|𝑥𝑖𝑛 − 𝑥𝑖|

2 <

𝑛

𝑖=1

𝜖2 

⇒ ‖𝑥𝑖𝑛 − 𝑥‖ < 𝜖 

⇒< 𝑥𝑛 > is a converge  

⇒ 𝐹𝑛  complete 

From (1) and (2) we get 𝐹𝑛 is a banach space  

 

 

Example:    H.W 

The space 𝐿𝑝 (1 ≤ 𝑝 ≤ ∞) with norm  

‖𝑥‖ = (∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝  , ∀𝑥 = (𝑥1, 𝑥2, … ) ∈ 𝐿
𝑝 is a banach space  

 

Example: 

A space 𝐿∞ with norm ‖𝑥‖ = 𝑠𝑢𝑝|𝑥𝑖| 

 ∀𝑥 = (𝑥1, 𝑥2, … ) ∈ 𝐿
∞ is a banach space   

Solution 

1-  𝐿∞ is a normed space  H.W 

2- Let < 𝑥𝑚 > is a cauchy sequence in 𝐿∞  
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⇒ 𝑥𝑚 ∈ 𝐿
∞  

⇒ 𝑥𝑚 = (𝑥1𝑚, 𝑥2𝑚, … , 𝑥𝑛𝑚 , … )  

Let 𝜖 > 0, ∃𝑘 ∈ 𝑁 ∋ 

‖𝑥𝑚 − 𝑥𝐿‖ < 𝜖, ∀𝑚 , 𝐿 > 𝑘 

∵ 𝑥𝑚 − 𝑥𝐿 = (𝑥1𝑚 − 𝑥1𝐿, 𝑥2𝑚 − 𝑥2𝐿, … , 𝑥𝑛𝑚 − 𝑥𝑛𝐿 , … )  

‖𝑥𝑚 − 𝑥𝐿‖ = 𝑠𝑢𝑝|𝑥𝑖𝑚 − 𝑥𝑖𝐿|  

⇒ 𝑠𝑢𝑝|𝑥𝑖𝑚 − 𝑥𝑖𝐿| < 𝜖, ∀𝑚, 𝐿 > 𝑘  

⇒ |𝑥𝑖𝑚 − 𝑥𝑖𝐿| < 𝜖, ∀𝑚, 𝐿 > 𝑘 for any 𝑖 

Any < 𝑥𝑖𝑚 > is a cauchy sequence in 𝐹 

Since 𝐹 is a complete 

⇒ < 𝑥𝑖𝑚 > converge in 𝐹  

Then ∃𝑥𝑖 ∈ 𝐹 such that  

< 𝑥𝑖𝑚 > converge to  𝑥𝑖  

Put 𝑥𝑖 = (𝑥1 , 𝑥2, … )  

‖𝑥𝑖𝑚 − 𝑥𝑖‖ < 𝜖, ∀𝑚 > 𝑘  

∵ 𝑥𝑚 ∈ 𝐿
∞  ⇒ ∃𝑘𝑚 ∈ 𝑅 ∋  

‖𝑥𝑖𝑚‖ ≤ 𝑘𝑚 , ∀𝑖  

 𝑥𝑖 = (𝑥𝑖 − 𝑥𝑖𝑚) + 𝑥𝑖𝑚  

|𝑥𝑖| ≤ |𝑥𝑖 − 𝑥𝑖𝑚| + |𝑥𝑖𝑚| < 𝜖 + 𝑘𝑚 , ∀𝑚 > 𝑘 

∀𝑥 ∈ 𝐿∞  

‖𝑥𝑚 − 𝑥‖ = 𝑠𝑢𝑝|𝑥𝑖𝑚 − 𝑥𝑖| < 𝜖 

 ⇒ 𝑥𝑚 → 𝑥 
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⇒ 𝐿∞  is a complete  

 

Definition: 

Let (𝑋, ‖. ‖1) and (𝑌, ‖. ‖2) be two normed space , a function 

𝑓: 𝑋 → 𝑌 is said to be continous at 𝑥0 ∈ 𝑋 if  

∀ 𝜖 > 0, ∃𝛿 > 0, ‖𝑥 − 𝑥0‖1 < 𝛿  

⇒ ‖𝑓(𝑥) − 𝑓(𝑥0) ‖2 < 𝜖  

Equivelently  

∀𝑥𝑛 → 𝑥0 in 𝑋  

 ⇒ 𝑓(𝑥𝑛) → 𝑓(𝑥) in 𝑌  

We say that 𝑓 is a continous of each point of 𝑋  

 

 

Example: 

Let 𝑋 be a normed space then the function 𝑓: 𝑋 → 𝑅 such that 

𝑓(𝑥) =  ‖𝑥‖ is a continous 

Solution 

Let 𝑥𝑛 → 𝑥0 in 𝑋  

⇒ ‖𝑥𝑛 − 𝑥0‖ → 0, 𝑛 → ∞  

|𝑓(𝑥𝑛) − 𝑓(𝑥0)| = |‖𝑥𝑛‖ − ‖𝑥0‖|  

≤ ‖𝑥𝑛 − 𝑥0‖ → 0 

⇒ |𝑓(𝑥𝑛) − 𝑓(𝑥0)| → 0, 𝑛 →∞  
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⇒ 𝑓(𝑥𝑛) → 𝑓(𝑥0)  

⇒ 𝑓 continous at 𝑥0 

 ⇒ 𝑓 continous  

 

 

 

Definition: 

Let 𝑋, 𝑌, 𝑍 are normed space , we say that 𝑓: 𝑋 × 𝑌 → 𝑍 

continous at point (𝑥0, 𝑦0) ∈ 𝑋 × 𝑌 if 𝑓(𝑥𝑛, 𝑦𝑛) → 𝑓(𝑥0, 𝑦0) ,  

∀𝑥𝑛 → 𝑥0 in 𝑋 and ∀𝑦𝑛 → 𝑦0 in 𝑌 

 

Theorem: 

Let 𝑋 be a normed space on a felid 𝐹 then  

1- 𝑓: 𝑋 × 𝑋 → 𝑋 , 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦, ∀𝑥, 𝑦 ∈ 𝑋 

2- 𝑓: 𝐹 × 𝑋 → 𝑋 , 𝑔(𝜆𝑦) = 𝜆𝑥, ∀𝜆 ∈ 𝐹, 𝑥 ∈ 𝑋 are continous 

function 

Proof 

1- Let 𝑥𝑛 → 𝑥0, 𝑦𝑛 → 𝑦0  

‖𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥0, 𝑦0)‖ = ‖(𝑥𝑛 + 𝑦𝑛) − (𝑥0 + 𝑦0)‖

= ‖(𝑥𝑛 − 𝑥0) + (𝑦𝑛 − 𝑦0)‖

≤ ‖(𝑥𝑛 − 𝑥0)‖ + ‖(𝑦𝑛 − 𝑦0)‖ 

Since ‖(𝑥𝑛 − 𝑥0)‖ → 0, ‖(𝑦𝑛 − 𝑦0)‖ → 0 

⇒ ‖(𝑥𝑛 − 𝑥0)‖ + ‖(𝑦𝑛 − 𝑦0)‖ → 0  
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⇒ ‖𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥0, 𝑦0)‖ → 0  

⇒ 𝑓(𝑥𝑛, 𝑦𝑛) → 𝑓(𝑥0, 𝑦0)  

⇒ 𝑓 continous function in (𝑥0, 𝑦0) 

2- Let 𝜆𝑛 → 𝜆,  in 𝐹 𝑥𝑛 → 𝑥0 in 𝑋 

‖𝑔(𝜆𝑛, 𝑥𝑛) − 𝑔(𝜆, 𝑥0)‖ 

                = ‖(𝜆𝑛𝑥𝑛) − (𝜆𝑥0)‖

= ‖𝜆𝑛𝑥𝑛 − 𝜆𝑥0 + 𝜆𝑛𝑥0 − 𝜆𝑛𝑥0‖ 

= ‖𝜆𝑛(𝑥𝑛 − 𝜆𝑛𝑥0) + 𝜆𝑛(𝑥0 − 𝜆𝑥0)‖ 

≤ |𝜆𝑛|‖(𝑥𝑛 − 𝑥0)‖ + |𝑥0|‖(𝜆𝑛 − 𝜆) ‖  

Since |𝜆𝑛 − 𝜆|  → 0, |𝑥𝑛 − 𝑥0| → 0  

⇒ ‖𝑔(𝜆𝑛, 𝑥𝑛) − 𝑔(𝜆, 𝑥0)‖ → 0  

⇒ 𝑔(𝜆𝑛, 𝑥𝑛) → 𝑔(𝜆, 𝑥0)  

⇒ 𝑔 continous function 

 

Example: 

Let 𝑋, 𝑌 are normed space , 𝑓: 𝑋 → 𝑌 linear transformation if 𝑓 

continous at 0 then 𝑓 continous at each point  

Proof 

Let 𝑥𝑛 → 𝑥0 in 𝑋  

⇒ 𝑥𝑛 − 𝑥0 → 0  

Since 𝑓 continous at 0  

⇒ 𝑓(𝑥𝑛 − 𝑥0) → 𝑓(0)  

Since 𝑓(0) = 0 , 𝑓 linear  

𝑓(𝑥𝑛 − 𝑥0) = 𝑓(𝑥𝑛) − 𝑓(𝑥0)  
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⇒ 𝑓(𝑥𝑛) − 𝑓(𝑥0) → 0  

⇒ 𝑓(𝑥𝑛) → 𝑓(𝑥0)  

⇒ 𝑓 continuos at 𝑥0  

 ⇒ 𝑓 continous at each point  

Note: 

The set of all linear function from 𝑋 in to 𝑌 will be denoted by 

𝐿(𝑋, 𝑌)  

If 𝑓: 𝑋 → 𝑋 denoted 𝐿(𝑋) 

 

Theorem: 

Let (𝑋, ‖. ‖) and (𝑌, ‖. ‖) be a normed space and let 𝑓: 𝑋 → 𝑌 

be a linear function , then 𝑓 is a continous iff 𝑓 is a continous at 

0  

Proof 

Suppose that 𝑓 is a continous at 0  

Let 𝑥𝑛 → 𝑥 in 𝑋  

⇒ 𝑥𝑛 − 𝑥 → 0  

Since 𝑓 continous at 0   

⇒ 𝑓(𝑥𝑛 − 𝑥) → 𝑓(0) in 𝑌  

Since 𝑓(0) = 0  and 𝑓 linear  

𝑓(𝑥𝑛 − 𝑥) = 𝑓(𝑥𝑛) − 𝑓(𝑥)  

⇒  𝑓(𝑥𝑛) − 𝑓(𝑥) → 0  
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⇒  𝑓(𝑥𝑛) → 𝑓(𝑥)  

⇒ 𝑓 continuos at 𝑥  

The conversely H.W 

 


