مفر دات المنهج<u>:</u>

Definition:

Let R be a set of real number and " + " addition on R, "." multipilication on R, then

1- For any $a, b \in R$, then $a + b \in R$ and $a, b \in R$ 2- For any $a, b, c \in R$ then (a + b) + c = a + (b + c) and (a.b).c =*a*.(*b*.*c*) 3- There exists $0,1 \in R$ such that a + 0 = 0 + a = a and a, 1, a = a4- For any $a \in R$ and $a \neq 0$ there exists $\frac{1}{a} = a^{-1} \in R$ and $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$ 5- For any $a \in R$, there exists $-a \in R$ such that a + (-a) =(-a) + a = 06- For any $a, b, c \in R$ then a.(b + c) = a.b + a.c and (b + c).a = b.a + c.a7- For any $a, b \in R$ then a + b = b + a and a, b = b, a8- $(\alpha + \beta)a = \alpha a + \beta a$ for any $a \in X, \alpha, \beta \in F$ 9- $(\alpha, \beta)a = \alpha$. (β, a) for any $a \in X, \alpha, \beta \in F$

Hence (R, +, .) is a field and is said to be a field of real number

<u>Definition:</u>

Let X be a non-empty set and F be a field then X is said to be vector space over F iff there exists two operations

Addition

 $+: X \times X \longrightarrow X$ and

Scalar multiplication

 $: F \times X \longrightarrow X$ between X and F this two operational satisfies conditions

- 1- For any $a. b \in X$ then $a + b \in X$ 2- For any $a. b \in X$ then a + b = b + a3- For any $a. b. c \in X$ then a + (b + c) = (a + b) + c4- there exists $0 \in X$ such that a + 0 = 0 + a = a for any $a \in X$ 0 is called zero vector 5- For any $a \in X$ there exists $-a \in X$ such that a + (-a) = (-a) + a = 0
 - 6- $\lambda a \in X$ for any $\lambda \in F$, $a \in X$
 - 7- λ . $(a + y) = \lambda$. $a + \lambda$. b, For any $a, b \in X, \lambda \in F$

Example:

1- Let R be a set of real number and let $V = R^n = \{ (a_1, a_2, ..., a_n) \}$ and +, . define on R^n as follows: let $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n) \in R^n$ then $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$ and let $\lambda \in R$, $(a_1, a_2, ..., a_n) \in R^n$ then, $\lambda(a_1, a_2, ..., a_n) = (\lambda a_1, \lambda a_2, ..., \lambda a_n)$ show that V be a vector space over a field R.

2- Let R be a set of real number and let

 $V = M_{m \times n} = \{A, A \text{ matrix over } R\}$ and +, .define on $A_{m \times n}$ as follows

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

$$B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$
 such that

$$A + B \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

and let $\alpha \in R$ then $\alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \dots & \alpha a_{mn} \end{bmatrix}$

show that V vector space over R

<u>Theorem:</u>

If X is a vector space over a field F then

1- 0.
$$x = 0$$
 for any $x \in X$
2- λ . $0 = 0$ for any $\lambda \in F$
3- $-(\lambda . x) = (-\lambda)x = \lambda(-x)$

4- For any $x, y \in X$, then there exists one element $z \in X$ such that x + z = y5- $\lambda(x - y) = \lambda x - \lambda y$ for any $x, y \in X, \lambda \in F$ 6- If $\lambda x = 0 \rightarrow \lambda = 0$ or x = 07- If $x \neq 0$ and $\lambda_1 \cdot x = \lambda_2 \cdot y$ then $\lambda_1 = \lambda_2$ 8- If $x \neq 0$, $\lambda \neq 0$, $y \neq 0$ and $\lambda x = \lambda y$ then x = y

Definition:

Let V be a vector space over a field F and $G \subseteq F$, $A, B \subseteq V$ we define A + B, GA as follows:

 $A + B = \{a + b, a \in A, b \in B\}$

 $GA = \{\lambda a, \lambda \in G, a \in A\}$

Example:

Let R be a set of a real numbers

And let $A = \{1,2\}, B = \{-1,7\}, C = \{0,4,6\}$ find A + B, A + C, 4A

 $A + B = \{1 + (-1), 1 + 7, 2 + (-1), 2 + 7\} = \{0, 8, 1, 9\}$ $A + C = \{1, 5, 7, 2, 8, 6\}$ $4A = \{4.1, 4.2\} = \{4, 8\}$

<u>Not:</u>

1- If $A = \{a\}$ (A contain only one element we write a + B instead of $\{a\} + B$ such that set a + B to displan B by a 2- If $0 \in A$ then $B \subseteq A + B$ 3- $A + B = \bigcup_{a \in A} (A + B)$ 4- If $G = \{\lambda\}$ we write λA instead of $\{\lambda\}A$ or GA such that $\lambda A = \{x = \lambda a, a \in A\}$ inpartically -A = (-1)A = $\{-a, a \in A\}$ we say that A symmetric set if -A = A then $A \cap (-A)$ is symmetric for any $A \subseteq X$

Definition:

A subset A to a space X over a field F is said to be balanced set if $\lambda A \subseteq A$, $\forall \lambda \in F$ and $|\lambda| \leq 1$.

<u>Theorem:</u>

Let A, B are balanced set of a space X over a field F show that whether

1- $A \cap B$, 2- $A \cup B$, 3- A + B, 4- αA are balanced sets or not

Proof:

1- Let $\lambda \in F$ and $|\lambda| \leq 1$

Since A, B are balanced set

 $\rightarrow \lambda A \subseteq A \text{ and } \lambda B \subseteq B$

We prove that $\lambda(A \cap B) \subseteq A \cap B$

Now, let $x \in \lambda(A \cap B)$ $x = \lambda y$, *where* $y \in A \cap B$

 \rightarrow

Since
$$y \in A \cap B \rightarrow y \in A \land y \in B$$

 $\rightarrow \lambda y \in \lambda A \land \lambda y \in \lambda B$ (since $x = \lambda y$)
 $\rightarrow x \in \lambda A \land x \in \lambda B$ (since $\lambda A \subseteq A$ and $\lambda B \subseteq B$)
 $\rightarrow x \in A \land x \in B$
 $\rightarrow x \in A \cap B$
Then we get $\lambda(A \cap B) \subseteq A \cap B \forall \lambda \in F$ and $|\lambda| \leq 1$
 $\rightarrow A \cap B$ is a balanced set

2-, 3- and 4- (H.W)

<u>Theorem:</u>

Let A be a balanced set of a space over F and $\lambda \in F$, $|\lambda| = 1$ then $\lambda A = A$ and every balanced set is a symmetric

Proof:

suppose that A is a balanced set $\rightarrow \lambda A \subseteq A, \lambda \in F \text{ and } |\lambda| \leq 1$ $\rightarrow \lambda A \subseteq A \text{ where } |\lambda| = 1 \dots (1)$ Now, we prove that $A \subseteq \lambda A$ where $|\lambda| = 1$ Let $x \in A$ Since, $|\lambda| \neq 0 \rightarrow \lambda \neq 0$ Take $\alpha = \frac{1}{\lambda} \rightarrow |\alpha| = 1$ becouse $|\alpha| = \left|\frac{1}{\lambda}\right| = \left|\frac{1}{1}\right| = |1| = 1$ Since A is a balanced $\rightarrow \alpha A \subseteq A$ $\rightarrow \alpha x \in A \qquad (x \in A, \rightarrow \alpha x \in \alpha A \subseteq A, \rightarrow \alpha x \in A)$ Then, $\lambda(\alpha x) \in \lambda A$ $\rightarrow \lambda . \frac{1}{\lambda} x \in \lambda A, \quad \rightarrow x \in \lambda A$ We get $A \subseteq \lambda A$...(2)
From (1) and (2) we get $\lambda A = A$ Now, we prove that A is a symmetric
Suppose that A balanced set and let $\lambda = -1 \rightarrow |\lambda| = 1$ since, $\lambda A = A \rightarrow -A = A$ $\rightarrow A$ symmetric

subspace

<u>Definition :</u>

A non empty sub set M of a vector space V over a field F is said to be sub space if M is a vector space over F.

<u>Example:</u>

Let $V = R^3$ is a vector space over R and

1- $M_1 = \{(x, y, 0), x, y \in R\}$

2-
$$M_2 = \{(x, 0, y), x, y \in R\}$$

3- $M_1 = \{(x, y, z), x, y, z \in R, x \ge 0\}$

Show that whether M_1 , M_2 and M_3 are subspace over R or not.

<u>Theorem:</u>

A non empty sub set M of a vector space V over a field F is subspace of V iff

1- $\forall x, y \in M, \rightarrow x + y \in M$ 2- $\forall x \in M, \alpha \in F \rightarrow \alpha x \in M$.

<u>Remark:</u>

For any vector space X over a field F then exists two subspace are $\{0\}$ zero subspace and X are said trivial subspace

*If M is a proper subset of X then M is said to be proper sub space.

<u>Theorem:</u>

Let M_1 and M_2 are subspace of a vector space V over a field F then

 $\begin{array}{l} 1 \text{-} M_1 \cap M_2 \text{ is a sub space} \\ 2 \text{-} M_1 \cup M_2 \text{ is a sub space iff } M_1 \subseteq M_2 \text{ or } M_2 \subseteq M_1 \\ 3 \text{-} M_1 + M_2 \text{ is a sub space and } M_1 \subseteq M_1 + M_2 \wedge M_2 \subseteq M_1 + M_2 \end{array}$

Proof

Let $x, y \in M_1 \cap M_2$, $\alpha, \beta \in F$ Since, $x, y \in M_1 \cap M_2 \rightarrow x, y \in M_1 \wedge x, y \in M_2$ Now, $x, y \in M_1$, M_1 subspace, $\alpha, \beta \in F$ $\rightarrow \alpha x + \beta y \in M_1$ Also $x, y \in M_2$, M_2 subspace, $\alpha, \beta \in F$ $\rightarrow \alpha x + \beta y \in M_2$

Now, $\alpha x + \beta y \in M_1 \land \alpha x + \beta y \in M_2$

 $\rightarrow \alpha x + \beta y \in M_1 \cap M_2, \alpha, \beta \in F$

Then $M_1 \cap M_2$ is a subspace

Linear comboination

Definition:

Let $v_1, v_2, ..., v_n \in V$, where V vector space over a field F, $v \in V$ then v is said to be linear combination of $v_1, v_2, ..., v_n$ if there exist $\alpha_1, \alpha_2, ..., \alpha_n \in F$ such that

 $V = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

<u>Example:</u>

Let $V = R^3$ be a vector space over a field R and let $v_1 = (1,0,0)$, $v_2 = (0,1,0)$, $v_3 = (0,0,1)$ and v = (2,3,6) show that v is a linear combination of v_1, v_2, v_3

Solution:

$$v = (2,3,6) = 2(1,0,0) + 3(0,1,0) + 6(0,0,1)$$

= (2,0,0) + (0,3,0) + (0,0,6) = (2,3,6) = v

→ v is linear combination of v_1, v_2, v_3 where $\alpha_1 = 2, \alpha_2 = 3, v_3 = 6 \in R$.

<u>Example:</u>

Let
$$A = \{ (1,2,3), (0,1,2), (0,0,1) \}$$
 prove $[A] = R^3$

Solution

Let $x_1 = (1,2,3)$, $x_2 = (0,1,2)$, $x_3 = (0,0,1)$ to prove that every element $(x, y, z) \in R^3$ is a linear combination of x_1, x_2, x_3

$$(x, y, z) = \lambda_1 (1, 2, 3) + \lambda_2 (0, 1, 2)\lambda_3 (0, 0, 1)$$
$$= (\lambda_1, 2\lambda_1, 3\lambda_1) + (0, \lambda_2, 2\lambda_2) + (0, 0, \lambda_3)$$
$$= (\lambda_1, 2\lambda_1 + \lambda_2, 3\lambda_1 + 2\lambda_2 + \lambda_3)$$
$$Now (x = \lambda_1 \dots (1))$$
$$2\lambda_1 + \lambda_2 = y \dots (2)$$
$$3\lambda_1 + 2\lambda_2 + \lambda_3 = z \dots (3)$$
$$But (1) in (2)$$
$$2x + \lambda_2 = y \rightarrow \lambda_2 = y - 2x$$
$$x = \lambda_1, \lambda_2 = y - 2x$$
$$but in (3)$$
$$3x + 2(y - 2x) + \lambda_3 = z$$
$$\rightarrow \lambda_3 = z - 3x - 2(y - 2x) = z - 3x - 2y + 4x$$
$$\lambda_3 = x + z - 2y$$
$$then x_1, x_2, x_3 generated R^3$$

<u>Definition:</u>

Let M is a proper subspace of a vector space X over a field F, we say that M is a maximal subspace if N subspace of X such that $M \subseteq N \subseteq X$ then N = X.

<u>Theorem:</u>

Let *M* is a proper subspace of a vector space *X* over a field *F* then *M* is a maximal subspace iff $X = [M \cup \{x_0\}]$ for any $x_0 \notin M$.

 $\forall x \in X \text{ is only one way to represent as } x = m + \lambda x_0 \text{ such that } m \in M, \lambda \in F.$

Proof

Since $x_0 \notin M \to M \subseteq [M \cup \{x_0\}] \subseteq X$

If *M* is a maximal subspace then by definition we get $[M \cup \{x_0\}] = X$

The converse

Suppose that N subspace such that $M \subseteq N \subseteq X$ let $x_0 \in N$, $x_0 \notin M$

 $\rightarrow M \subseteq [M \cup \{x_0\}] \subseteq N$

 $\therefore X = [M \cup \{x_0\}] \quad \rightarrow X \subseteq N \quad \rightarrow X = N$

Then M is a maximal subspace

Now, we prove that $\forall x \in X$ can be written as only one way $x = m + \lambda x$, $m \in M$, $\lambda \in F$

Since, $X = [M \cup \{x_0\}], x \in X$

 $\begin{array}{l} \rightarrow x \in [M \cup \{x_0\}] \rightarrow x = m + \lambda x, \ \lambda \in F, \ m \in M \ \text{To prove} \\ \textit{unique}, & \textit{let} \ x = \\ m_1 + \lambda_1 x_0 \ \textit{and} \ x = m_2 + \lambda_2 x_0 \ \textit{such that} \ \lambda_1, \lambda_2 \in F, \ m_1, m_2 \in \\ M \end{array}$

Since
$$x = x \rightarrow m_1 + \lambda_1 x_0 = m_2 + \lambda_2 x_0 \quad m_1 - m_2 = \lambda_2 x_0 - \lambda_1 x_0$$

 $m_1 - m_2 = (\lambda_2 - \lambda_1) x_0$,
since $m_1, m_2 \in M \rightarrow m_1 - m_2 \in M$ (M subspace) \rightarrow
 $(\lambda_2 - \lambda_1) x_0 \in M$ and
 $x_0 = \frac{1}{\lambda_2 - \lambda_1} \underbrace{(m_1 - m_2)}_{\in M}$, M subspace
 $\rightarrow \frac{1}{\lambda_2 - \lambda_1} (m_1 - m_2) \in M$
 $\rightarrow x_0 \in M$ (contradiction) then $\lambda_1 = \lambda_2$ and $m_1 = m_2$

Definition:

Let M_1 and M_2 are tow subspace of a vector space X over a field F we say that M_1, M_2 are disjoint iff $M_1 \cap M_2 = \{0\}$

Definition:

Let M_1 and M_2 are two subspace of a vector space X over a field F we say that X is direct sum to M_1 and M_2 and denoted by $X = M_1 \bigoplus M_2$, if for any $x \in X$ can be written as unique method $x = m_1 + m_2$, $m_1 \in M_1$, $m_2 \in M_2$

<u>Theorem:</u>

Let M_1 and M_2 are two subspace of a vector space X over a field F then Let M_1 and M_2 are two subspace of a vector space X over a field $X = M_1 \bigoplus M_2$ iff

1-
$$M_1 \cap M_2 = \{0\};$$

2- $X = M_1 + M_2$

Proof

Suppose that $X = M_1 \bigoplus M_2$ for any $x \in X$ can be written as unique way for sum of elements one of thies element in M_1 and the other in M_2 then $X = M_1 + M_2$

Now, we prove that $M_1 \cap M_2 = \{0\}$ Let $x \in M_1 \cap M_2 \rightarrow x \in M_1 \land x \in M_2$ If $x \neq 0, x \in X$ x = 0 + x,

$$0 \in M_1, x \in M_2$$
 or $x = x + 0, x \in M_1, 0 \in M_2$

Then x can be written by two method and this cantradection then $M_1 \cap M_2 = \{0\}$

The converse : suppose that (1) and (2) holds let $x \in X$, since $X = M_1 + M_2$ $\rightarrow x = m_1 + m_2$, $m_1 \in M_1, m_2 \in M_2$ Let $x = x_1 + x_2$, $x_1 \in M_1, x_2 \in M_2$ $x = y_1 + y_2$, $y_1 \in M_1, y_2 \in M_2$ x = x $\rightarrow x_1 + x_2 = y_1 + y_2$ $x_1 - y_1 = y_2 - x_2$ Since, $x_1 - y_1 \in M_1$, $y_2 - x_2 \in M_2$ (M_1 subspace $x_1, y_1 \in M_1, M_2$ subspace $x_2, y_2 \in M_2$) $\rightarrow x_1 - y_1, y_2 - x_2 \in M_1$ and $x_1 - y_1, y_2 - x_2 \in M_2$ Then $\rightarrow x_1 - y_1, y_2 - x_2 \in M_1 \cap M_2$ But, $M_1 \cap M_2 = \{0\}$ $\rightarrow x_1 - y_1 = \{0\}, \quad y_2 - x_2 = \{0\}$ $\rightarrow x_1 = y_1, \quad y_2 = x_2$ Then we get *x* can be written as one way

<u>Remark:</u>

If the vector space X direct sum of two subspace M_1 and M_2 (i.e\ $X = M_1 \bigoplus M_2$ then M_2 is said to be (complement subspace) M_1 in X (i.e\ M_1 and M_2 are said to be complement subspace).

<u>Theorem:</u>

If M is a subspace of a vector space X over a field F then M is has a complement subspace in X

<u>Question:</u>

Show that whether every subspace has unique complement subspace

Example:

Let $X = R^2$ and $M_1 = \{ (x, 0), x \in R \}$ $M_2 = \{ (0, x), x \in R \}$ $M_3 = \{ (x, x), x \in R \}$ $X = M_1 \bigoplus M_2 = M_1 \bigoplus M_3$, every M_2 and M_3 is a complement of M_1 .

Linear independence

<u>Definition:</u>

Let X be a vector space over afield X, a finite set of a vector in X $\{x_1, x_2, ..., x_n\}$ is said to be linear dependent iff, there exists $\lambda_1, \lambda_2, ..., \lambda_n \in F$, such that $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n = 0$

 $\lambda_1, \lambda_2, \dots, \lambda_n$ not all zero

Other wise, we say that the set is linear independent iff $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0$ then $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$

*If A is a subset of X we say that A is a linear independent if every non empty finite subset of A is a linear independent

i.e if there exist a non – empty finite subset of A is a linear dependent.

<u>Example:</u>

Show that the vector in \mathbb{R}^3 is independent or not

1-
$$x_1 = (1, -2, 1), x_2 = (2, 1, -1), x_3 = (6, -4, 1)$$

2- $x_1 = (1, 2, -3), x_2 = (1, -3, 2), x_3 = (1, -3, 2)$

Solution

1- H.W
2-
$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0$$

 $\lambda_1 (1,2,-3) + \lambda_2 (1,-3,2) + \lambda_3 (1,-3,2) = 0$
 $(\lambda_1, 2\lambda_1, -3\lambda_1) + (\lambda_2, -3\lambda_2, 2\lambda_2) + (\lambda_3, -3\lambda_3, 2\lambda_3) = 0$
 $\lambda_1 + \lambda_2 + \lambda_3 = 0$... (1)
 $2\lambda_1 + 3\lambda_2 - \lambda_3 = 0$... (2)
 $-3\lambda_1 + 2\lambda_2 + 5\lambda_3 = 0$... (3)

$$\lambda_1 + \lambda_2 + \lambda_3 = 0 \quad (\times 2)$$

$$\rightarrow 2\lambda_1 + 2\lambda_2 + 2\lambda_3 = 0$$
$$-2\lambda_1 + 3\lambda_2 + \lambda_3 = 0$$

$$-\lambda_2 + 3\lambda_3 = 0\dots(4)$$

$$2\lambda_1 + 3\lambda_2 - \lambda_3 = 0 \quad (\times 3) \rightarrow 6\lambda_1 + 9\lambda_2 - 3\lambda_3 = 0 - 3\lambda_1 + 2\lambda_2 + 5\lambda_3 = 0 (\times 2) \rightarrow -6\lambda_1 + 4\lambda_2 + 10\lambda_3 = 0$$

$$6\lambda_1 + 9\lambda_2 - 3\lambda_3 = 0$$
$$-6\lambda_1 + 4\lambda_2 + 10\lambda_3 = 0$$
$$13\lambda_2 + 7\lambda_3 = 0 \dots (5)$$

From (4) and (5) we get

$$-\lambda_2 + 3\lambda_3 = 0(\times 13) \rightarrow -13\lambda_2 + 39\lambda_3 = 0$$

$$\frac{13\lambda_2 + 7\lambda_3 = 0}{46\lambda_3 = 0}$$

 $\rightarrow \lambda_3 = 0$ from (4) or (5)

We get $\lambda_2 = 0$ from (1) or (2) or (3) we get

$$\lambda_1 = 0$$

Then $\lambda_1 = \lambda_2 = \lambda_3 = 0$

Linear independent

Example:

Let x_1, x_2 and x_3 are independent vector space of a vector space X over a field F prove that the vectors $x_1 + x_2, x_1 - x_2, x_1 - 2x_2 + x_3$ are linear independent

Solution

$$\lambda_1(x_1 + x_2) + \lambda_2(x_1 - x_2) + \lambda_3(x_1 - 2x_2 + x_3) = (0,0,0)$$
$$(\lambda_1 x_1 + \lambda_1 x_2) + (\lambda_2 x_1 - \lambda_2 x_2) + (\lambda_3 x_1 - 2\lambda_3 x_2 + \lambda_3 x_3)$$
$$= (0,0,0)$$

$$\lambda_{1}x_{1} + \lambda_{2}x_{1} + \lambda_{3}x_{1} = 0$$

$$\lambda_{1}x_{2} - \lambda_{2}x_{2} - 2\lambda_{3}x_{2} = 0$$

$$\lambda_{3}x_{3} = 0$$

$$\rightarrow (\lambda_{1} + \lambda_{2} + \lambda_{3})x_{1} = 0$$

$$(\lambda_{1} - \lambda_{2} - 2\lambda_{3})x_{2} = 0$$

$$\lambda_{3}x_{3} = 0$$

Since, x_{1}, x_{2} and x_{3} are independent

$$\rightarrow \lambda_{1} + \lambda_{2} + \lambda_{3} = 0$$

$$\lambda_{1} - \lambda_{2} - 2\lambda_{3} = 0$$

 $\lambda_3 = 0$

Bases and Dimension

<u>Definition:</u>

Let A be a non-empty subset of a vector space X over a field F, we say that A is a basis for X iff A is a linear independent and generated X, X = [A]

<u>Example</u>

Let \mathbb{R}^n be a vector space over a field \mathbb{R} , the set $\{e_1, e_2, \dots, e_n\}$ such that $e_1 = (1,0, \dots, 0), e_2 =$ $(0,1, \dots, 0), e_3 = (0,0,1, \dots, 0), \dots, e_n = (0,0, \dots, 1)$ Is a basis for \mathbb{R}^n and said to be natural basis

solution

 $1 - \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n = 0$ $\lambda_1(1,0,\ldots,0) + \lambda_2(0,1,\ldots,0) + \cdots + \lambda_n(0,0,\ldots,1) = 0$ $(\lambda_1, 0, \dots, 0) + (0, \lambda_2, \dots, 0) + \dots + (0, 0, \dots, \lambda_n) = 0$ $\lambda_1 = 0$ $\lambda_2 = 0$ $\lambda_3 = 0$. $\lambda_n = 0$ $\lambda_1 = \lambda_2 = \lambda_3 = \dots = \lambda_n = 0$ Linear independent 2- Let $(x_1, x_2, \dots, x_n) \in R$ such that $(x_1, x_2, \dots, x_n) = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n$

$$\rightarrow (x_1, x_2, \dots, x_n) = \lambda_1(1, 0, \dots, 0) + \lambda_2(0, 1, \dots, 0) + \dots + \lambda_n(0, 0, \dots, 1)$$

$$\rightarrow (x_1, x_2, \dots, x_n) = (\lambda_1, 0, \dots, 0) + (0, \lambda_2, \dots, 0) + \dots + (0, 0, \dots, \lambda_n)$$

$$\rightarrow x_1 = \lambda_1$$

$$x_2 = \lambda_2$$

$$\dots$$

$$x_n = \lambda_n$$

$$\rightarrow R^n = [A], \text{ where } A = \{e_1, e_2, \dots, e_n\}$$

$$\rightarrow \text{ generated } R^n$$

$$\rightarrow A \text{ is a basis}$$

<u>Remark:</u>

If $X = \{0\}$ then there is no a subset linear independent of X then X is a basis.

<u>Example:</u>

Show that the following vectors is a basis for \mathbb{R}^3 or not with prove

a-
$$x_1 = (1,3,-4), x_2 = (1,4,-3), x_3 = (2,3,-1)$$

b- $x_1 = (2,4,3), x_2 = (0,1,1), x_3 = (0,1,-1)$

Solution:

a- H.W
b-

$$1 - \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$$

 $\lambda_1(2,4,3) + \lambda_2(0,1,1) + \lambda_3(0,1,-1) = 0$
 $(2\lambda_1, 4\lambda_1, 3\lambda_1) + (0, \lambda_2, \lambda_2) + (0, \lambda_3, -\lambda_3) = 0$
 $2\lambda_1 = 0 \dots (1)$
 $4\lambda_1 + \lambda_2 + \lambda_3 = 0 \dots (2)$
 $3\lambda_1 + \lambda_2 - \lambda_3 = 0 \dots (3)$
By (1) we get $\lambda_1 = 0$
Cover $\lambda_1 = 0$ in (2), (3) we get
 $\lambda_2 + \lambda_3 = 0 \dots (4)$
 $\lambda_2 - \lambda_3 = 0 \dots (5)$
 $2\lambda_2 = 0 \rightarrow \lambda_2 = 0$
Cover $\lambda_1 = 0$, $\lambda_2 = 0$ in (2) or (3) we get
 $\lambda_3 = 0 \longrightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$ linear independent

2- Let
$$(a_1, a_2, a_3) \in \mathbb{R}^3$$
 such that
 $(a_1, a_2, a_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$
 $\rightarrow (a_1, a_2, a_3) = \lambda_1 (2, 4, 3) + \lambda_2 (0, 1, 1) + \lambda_3 (0, 1, -1)$
 $\rightarrow (a_1, a_2, a_3) = (2\lambda_1, 4\lambda_1, 3\lambda_1) + (0, \lambda_2, \lambda_2) + (0, \lambda_3, -\lambda_3)$

$$a_{1} = 2\lambda_{1} \dots (1)$$

$$a_{2} = 4\lambda_{1} + \lambda_{2} + \lambda_{3} \dots (2)$$

$$a_{3} = 3\lambda_{1} + \lambda_{2} - \lambda_{3} \dots (3)$$
From (1) we get $\lambda_{1} = \frac{a_{1}}{2}$ cover in (2) and (3)

$$a_{2} = 4(\frac{a_{1}}{2}) + \lambda_{2} + \lambda_{3} , a_{3} = 3\frac{a_{1}}{2} + \lambda_{2} - \lambda_{3}$$

$$a_{2} = 2a_{1} + \lambda_{2} + \lambda_{3} \dots (4)$$

$$a_{3} = \frac{3}{2}a_{1} + \lambda_{2} - \lambda_{3} \dots (5)$$

$$a_{2} + a_{3} = 2a_{1} + \frac{3}{2}a_{1} + 2\lambda_{2}$$

$$a_{2} + a_{3} = \frac{4a_{1} + 3a_{1}}{2} + 2\lambda_{2}$$

$$a_{2} + a_{3} = \frac{7}{2}a_{1} + 2\lambda_{2}$$

$$2\lambda_{2} = a_{2} + a_{3} - \frac{7}{2}a_{1}$$

$$\lambda_{2} = \frac{a_{2}}{2} + \frac{a_{3}}{2} - \frac{7}{4}a_{1} \text{ cover in } (4)$$

$$2a_{1} + \frac{a_{2}}{2} + \frac{a_{3}}{2} - \frac{7}{4}a_{1} + \lambda_{3} = a_{2}$$

 $\lambda_{3} = a_{2} - 2a_{1} - \frac{a_{2}}{2} - \frac{a_{3}}{2} + \frac{7}{4}a_{1}$ $= \frac{2-1}{2}a_{2} + \frac{7-8}{4}a_{1} - \frac{a_{3}}{2}$ $\lambda_{3} = 1a_{2} - \frac{1}{4}a_{1} - \frac{1}{2}a_{3}$ $\rightarrow Generated R^{3}$ $\rightarrow basis$

Definition:

Let X be a vector space over a field F we say that the number of the element of a basis of X is dimension of X and denoted by dim(X)

• Zero vector space $X = \{0\}$ othough that denoted not have basis then dim(X) = 0, we say that the vector space X is finite dimension iff $dim(X) = n, n \in Z^+$ or n = 0 we say that the vector space X is an infinite dimension is the number of the element of a basis of X is infinite $i.e \ dim(X) = \infty$.

Example:

Find the dimension of he vector space R^3 over a field R where $S = \{ (1,0,0), (0,1,0), (0,0,1) \}$ is a basis

Solution

 $dim(R^3) = 3$

Convexity

Definition:

Let A be a subset of a vector space X over a field F A is said to be convex set iff $\lambda x + (1 - \lambda)y \in A$ $\forall x, y \in A, \lambda \in F, 0 \le \lambda \le 1$

ÓR

A is a convex set iff $\lambda A + (1 - \lambda)A \subseteq A \quad \forall \lambda \in F, 0 \le \lambda \le 1$

 The empty set Ø, and the set contain only one element are convex set

<u>Example:</u>

Every subspace is a convex set but the conversely need not true in general

Solution

Let M be a subspace of a vector space X then $\forall x, y \in M, \alpha, \beta \in F$

 $\rightarrow \alpha x + \beta y \in M$ $Put \ \lambda = \alpha , \ 1 - \lambda = \beta , \quad 0 \le \lambda \le 1$ $\rightarrow \lambda x + (1 - \lambda)y \in M, \quad \forall x, y \in M, \lambda \in F$

 $\rightarrow M$ is a convex set

The conversely (H.W) by example

<u>Theorem:</u>

If A, B are convex sets of a vector space over a field then , A + B is a convex set of a vector space.

Proof

Let $x, y \in A + B, \lambda \in F, 0 \le \lambda \le 1$

Since $x \in A + B \rightarrow x = a + b \quad \exists a \in A, b \in B$ and $y \in A + B \rightarrow y = c + d \quad \exists c \in A, d \in B$

Since Since A is a convex set and $a, c \in A$

$$\rightarrow \lambda a + (1 - \lambda)c \in A$$
, $\lambda \in F, 0 \le \lambda \le 1$

And since B is a convex set and $b, d \in B$

$$\rightarrow \lambda b + (1 - \lambda)d \in B, \qquad \lambda \in F, 0 \le \lambda \le 1$$

Now,

Then
$$\lambda x + (1 - \lambda)y \in A + B$$
, $\lambda \in F$, $0 \le \lambda \le 1$

A + B is a convex set

<u>Remark:</u>

If A is a subset of a vector space X then $(\alpha + \beta)A \subseteq \alpha A + \beta A$

Proof

Let
$$x \in (\alpha + \beta)A$$

 $\rightarrow x = (\alpha + \beta)a, \ a \in A$
 $= \alpha a + \beta a \in \alpha A + \beta A$
 $\rightarrow x \in \alpha A + \beta A$
 $\rightarrow (\alpha + \beta)A \subseteq \alpha A + \beta A$
But $\alpha A + \beta A \nsubseteq (\alpha + \beta)A$

<u>Theorem:</u>

If A be a subset of a vector space X over F then A is a convex set iff

 $(\alpha + \beta)A = \alpha A + \beta A, \alpha, \beta \in R^+$

Proof

Let A is a convex set,

we prove that $(\alpha + \beta)A = \alpha A + \beta A$

since by above remark $(\alpha + \beta)A \subseteq \alpha A + \beta A \dots (1)$ It remains to show that $\alpha A + \beta A \subseteq (\alpha + \beta)A$ Let $x \in \alpha A + \beta A$ $\rightarrow x = \alpha a + \beta b, \ \alpha, \beta \in \mathbb{R}^+, a, b \in A$ $x = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} a, \frac{\beta}{\alpha + \beta} b\right)$ Put, $\lambda = \frac{\alpha}{\alpha + \beta}, \ 1 - \lambda = \frac{\beta}{\alpha + \beta}$ Since, $\alpha, \beta \in \mathbb{R}^+, \ \lambda \ge 0$ and since $\alpha \le \alpha + \beta \rightarrow \lambda \le 1$ $\rightarrow 0 \le \lambda \le 1$ And since, A is a convex set $\rightarrow \lambda a + (1 - \lambda)b \in A$ $i.e \setminus \frac{\alpha}{\alpha + \beta} a, \frac{\beta}{\alpha + \beta} b \in A$ then $x \in (\alpha + \beta)A$

$$\rightarrow \alpha A + \beta A \subseteq (\alpha + \beta)A...$$
 (2)

From (1) and (2) we get $(\alpha + \beta)A = \alpha A + \beta A$

The converse

Let $(\alpha + \beta)A = \alpha A + \beta A$, $\alpha, \beta R^+$

Let
$$\lambda \in F$$
, $0 \le \lambda \le 1 \rightarrow 1 - \lambda \ge 0$

Then we get

$$\lambda A + (1 - \lambda)A = (\lambda + (1 - \lambda))A = A \subseteq A$$

Then, $\lambda A + (1 - \lambda)A \subseteq A$

Then A is a convex set

<u>Theorem:</u>

Let A, B are two convex sets of a vector space over a field then $A \cap B$ is a convex set

Proof

Let $x, y \in A \cap B$, $\lambda \in F$, $0 \le \lambda \le 1$ Since, $x, y \in A \cap B \rightarrow x, y \in A \land x, y \in B$ Now, $x, y \in A$, A convex set, $\lambda \in F$, $0 \le \lambda \le 1$ $\rightarrow \lambda x + (1 - \lambda)y \in A$ Also, $x, y \in B$, B convex set $\lambda \in F$, $0 \le \lambda \le 1$ $\rightarrow \lambda x + (1 - \lambda)y \in B$ Now, $\lambda x + (1 - \lambda)y \in A \land \lambda x + (1 - \lambda)y \in B$ $\rightarrow \lambda x + (1 - \lambda)y \in A \cap B, \lambda \in F$, $0 \le \lambda \le 1$ Then $A \cap B$ is a convex set

Definition:

Let A be a subset of a vector space X then the intersection of all convex subset of X containing A is the smallest convex subset of X containing A is called the convex hull of A and denoted by conv(A),

 $conv(A) = \{A_i, A \text{ convex set and } A \subseteq A_i\}$

<u>Remark:</u>

 $1-A \subseteq conv(A)$ 2-A is a convex set iff A = conv(A)

<u>Definition:</u>

Let *X* be a vector space over a field *F* let $x_1, x_2, ..., x_n \in X$, we say that the vector $x \in X$ is a convex combination for the vector $x_1, x_2, ..., x_n$ if $x = \sum_{i=1}^n \lambda_i x_i$, $\lambda_i \ge 0$, $\sum_{i=1}^n \lambda_i = 1$

Affine sets

<u>Definition:</u>

Let A be a subset of a vector space X over a field F A is said to be affine set iff $\lambda x + (1 - \lambda)y \in A$ $\forall x, y \in A, \lambda \in F$

• The empty set Ø , and the set contain only one element are affine sets

<u>Example:</u>

Every affine set is a convex set but the conversely need not true in general

Solution

Let A be affine set in X then $\forall x, y \in A, \lambda \in F$ $\rightarrow \lambda x + (1 - \lambda)y \in A$ For any $\lambda \in F$ $\rightarrow \lambda x + (1 - \lambda)y \in A x, y \in A, \lambda \in F, 0 \le \lambda \le 1$ $\rightarrow A$ is a convex set

The conversely (H.W) by example

<u>Example:</u>

Every subspace is affine set but the conversely need not true in general

<u>Theorem:</u>

If A, B are affine sets of a vector space over a field then , A + B is affine set of a vector space.

Proof

Let $x, y \in A + B, \lambda \in F$,

Since $x \in A + B \rightarrow x = a + b \quad \exists a \in A, b \in B$ and $y \in A + B \rightarrow y = c + d \quad \exists c \in A, d \in B$

Since A is a convex set and $a, c \in A$

$$\rightarrow \lambda a + (1 - \lambda)c \in A, \qquad \lambda \in F,$$

And since B is a convex set and $b, d \in B$

$$\rightarrow \lambda b + (1 - \lambda)d \in B, \qquad \lambda \in F,$$

Now,

Then $\lambda x + (1 - \lambda)y \in A + B$, $\lambda \in F$

A + B is affine set

<u>Theorem:</u>

Let X be a vector space and let $x_0 \in X$ then

1- If M is a subspace in X then $x_0 + M$ is affine set in X

2- If A is affine set in X then $A - x_0$ is a subspace in X

Proof

1- Suppose that M is a subspace and let $x, y \in x_0 + M, \lambda \in F$

 $x = x_0 + m_1, y = x_0 + m_2, m_1, m_2 \in M$

$$\lambda x + (1 - \lambda)y = \lambda(x_0 + m_1) + (1 - \lambda)(x_0 + m_2)$$

= $\lambda x_0 + \lambda m_1 + (1 - \lambda)x_0 + (1 - \lambda)m_2$
= $\lambda x_0 + (1 - \lambda)x_0 + \lambda m_1 + (1 - \lambda)m_2$
= $(\lambda x_0 + x_0 - \lambda x_0) + \lambda m_1 + (1 - \lambda)m_2$
= $x_0 + \lambda m_1 + (1 - \lambda)m_2$

Since, $m_1, m_2 \in M, M$ is a subspace

$$\rightarrow \underbrace{\lambda}{\alpha} m_1 + \underbrace{(1-\lambda)}{\beta} m_2 \in M$$
Then $x_0 + \lambda m_1 + (1-\lambda)m_2 \in x_0 + M$

$$\rightarrow \lambda x + (1-\lambda)y \in x_0 + M$$

$$\rightarrow x_0 + M \text{ is affine set}$$
2- H.W

Theorem: H.W

Let A, B are two affine sets of a vector space over a field then $A \cap B$ is affine set

Definition:

Let A be a subset of a vector space X the the smallest set X contain A is called affine set generated by A and denoted by aff(A),

 $aff(A) = \{A_i, A \text{ caffine set and } A \subseteq A_i\}$

<u>Remark:</u>

1- $x = \sum_{i=1}^{n} \lambda_i x_i$, $x_i \in A, \lambda_i \ge 0$, $\sum_{i=1}^{n} \lambda_i = A$ 2- Ais affine set iff A = aff(A)

Linear transformation

<u>Definition:</u>

Let X, Y are vector space over a field F, the function $f: X \rightarrow Y$ is said to be linear transformation if the conditions holds

1-
$$f(x + y) = f(x) + f(y), \forall x, y \in X$$

2- $f(\lambda x) = \lambda f(x), \forall x \in X, \lambda \in F$

This two conditions equivalent to the condition $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \forall x, y \in X, \alpha, \beta \in F$

*- linear transformation $f: X \to Y$ is said to be linear function on X

Example:

Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ define as follows

$$f(x_1, x_2, x_3) = (x_1, x_2)$$

 $\forall (x_1, x_2, x_3) \in \mathbb{R}^3 \text{ show that } f \text{ linear transformation}$ Solution $Let x, y \in \mathbb{R}^3, \alpha, \beta \in F$ Since $x \in \mathbb{R}^3 \rightarrow x = (x_1, x_2, x_3) \text{ and}$ $y \in \mathbb{R}^3 \rightarrow x = (y_1, y_2, y_3)$ $\alpha x + \beta y = \alpha(x_1, x_2, x_3) + \beta(y_1, y_2, y_3)$ $= (\alpha x_1, \alpha x_2, \alpha x_3) + (\beta y_1, \beta y_2, \beta y_3)$ $= (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + \beta y_3)$ $f(\alpha x + \beta y) = f(\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + \beta y_3)$ $= (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + \beta y_3)$ $= (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + \beta y_3)$ $= (\alpha x_1, \alpha x_2) + (\beta y_1, \beta y_2)$ $= \alpha (x_1, x_2) + \beta (y_1, y_2)$ $= \alpha f(x) + \beta f(y)$

Then f is a linear transformation

<u>Example:</u>

Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ define as follows

$$f(x_1, x_2) = x_1 x_2, \forall (x_1, x_2) \in \mathbb{R}^2$$

Is not linear transformation

Solution

Let $x, y \in \mathbb{R}^2$ such that $x = (x_1, x_2), y = (y_1, y_2)$ $x + y = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$ $f(x + y) = f(x_1 + y_1, x_2 + y_2) = (x_1 + y_1)(x_2 + y_2)$ $= x_1 x_2 + x_1 y_2 + y_1 x_2 + y_1 y_2 \dots (1)$ $f(x) + f(y) = f(x_1, x_2) + f(y_1, y_2) = x_1 x_2 + y_1 y_2 \dots (2)$ Since $(1) \neq (2)$

$$\rightarrow f(x+y) \neq f(x) + f(y)$$

f is not linear transformation

<u>Remark:</u>

- 1- Zero transformation: if X and Y are two vector spaces over a field F then, the function $f: X \to Y$ define as follows, $f(x) = 0, \forall x \in X$ is a linear transformation
- 2- Identity transformation: if X and Y are two vector spaces over a field F then, the function $f: X \to Y$ define as follows, $f(x) = x, \forall x \in X$ is a linear transformation

Some properties of linear transformation

<u>Theorem:</u>

If $f: X \rightarrow Y$ linear transformation then

1-
$$f(0) = 0$$

2- $f(-x) = -f(x)$
3- $f(x - y) = f(x) - f(y)$
4- $f(\sum_{i=1}^{n} \lambda_i x_i) = \sum_{i=1}^{n} \lambda_i f(x_i)$

Proof

 $f(0) = f(0 \cdot 0) = 0 \cdot f(0) = 0$

1- Since $0 = 0 \cdot 0$

- 2- $f(-x) = f((-1)x) = -1f(x) = -f(x), -1 \in F$ 3- H.W
- 4- We prove by mathematical induction

If
$$n = 1$$
 then

$$f\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right) = f(\lambda_{1}x_{1}) = \lambda_{1}f(x_{1}) = \sum_{i=1}^{n}\lambda_{i}f(x_{i})$$

Let the statement is true when n = k

i.e\ $f\left(\sum_{i=1}^{k} \lambda_i x_i\right) = \sum_{i=1}^{k} \lambda_i f(x_i)$

we prove that the statement is a true for n = k + 1

$$f\left(\sum_{i=1}^{k+1} \lambda_i x_i\right) = f\left(\sum_{i=1}^k \lambda_i x_i + \lambda_{k+1} x_{k+1}\right)$$
$$= \sum_{i=1}^k \lambda_i f(x_i) + \lambda_{k+1} f(x_{k+1}) = \sum_{i=1}^{k+1} \lambda_i f(x_i)$$

Then the statement is true for any *n* when *n* is a positive integer number

Theorem:

If X, Y and Z are vector space over afield F and $f: X \rightarrow$ Y, g: Y \rightarrow Z are linear transformation then $g \circ f: X \rightarrow$ Z is a linear transformation

Proof

Let $x, y \in X, \alpha, \beta \in F$ $g \circ f(\alpha x + \beta y)$ $= g(f(\alpha x + \beta y))$ $= g(\alpha f(x) + \beta f(y))$ $= \alpha g(f(x)) + \beta g(f(y))$ $= \alpha g \circ f(x) + \beta g \circ f(y)$

 $g \circ f$ is a linear transformation

<u>Theorem:</u>

If $f: X \to Y$ is a linear transformation and $A \subseteq X, B \subseteq Y$ then

1- If A is a subspace (convex set) in X then f(A) is a subspace (convex set) in Y

2- If B is a subspace (convex set) in Y then $f^{-1}(B)$ is a subspace (convex set) in X

Proof

1- Let A be a subspace in X

We prove that f(A) is a subspace in Y

$$f(A) = \{f(x), x \in A\} \subseteq Y$$

```
Since A is a subspace \rightarrow 0 \in A
```

 $0 = f(0) \in f(A)$ $\rightarrow f(A) \neq \emptyset$ Let $\alpha, \beta \in F, a, b \in f(A)$ $a = f(c), b = f(d), c, d \in A$ $\alpha a + \beta b = \alpha f(c) + \beta f(d)$ $= f(\alpha c) + f(\beta d)$

$$= f(\alpha c + \beta d)$$

Since $c, d \in A, A$ subspace $\alpha, \beta \in F$

 $\rightarrow \alpha c + \beta d \in A$ $\rightarrow f(\alpha c + \beta d) \in f(A)$ $\rightarrow \alpha a + \beta b \in f(A)$ $\rightarrow f(A) \text{ is a subspace}$ Let B is a convex set in Y We prove that $f^{-1}(B)$ is a convex set in X

$$f^{-1}(B) = \{x \in X, f(x) \in B\} \subseteq X$$

Let $a, b \in f^{-1}(B), \gamma \in F, 0 \le \gamma \le 1$

$$f(a), f(b) \in B$$

Since B convex set

$$\rightarrow \gamma f(a) + (1 - \gamma)f(b) \in B \rightarrow f(\gamma a) + f((1 - \gamma)b) \in B \rightarrow f(\gamma a + (1 - \gamma)b) \in B \rightarrow \gamma a + (1 - \gamma)b \in f^{-1}(B) f^{-1}(B) \text{ is a convex set}$$

<u>Remark:</u>

If X is a vector space of finite dimension and let $\{x_1, x_2, ..., x_n\} = B$ is a basis of X then $x_i \in X$ can be written unique method as

$$x = \sum_{i=1}^{n} \gamma_i x_i , \gamma_i \in F$$

<u>Theorem:</u>

If X be a vector space and $\{x_1, x_2, ..., x_n\}$ is a basis of X then, foe any set $\{y_1, y_2, ..., y_n\}$ contain n vectors in voctor space Y there exists only one linear transformation method $f: X \rightarrow Y$, such that $f(x_i) = y_i$

Proof

Let
$$x \in X$$
, since $\{x_1, x_2, \dots, x_n\}$ basis

 $\rightarrow x$ has unique method

$$x = \sum_{i=1}^{n} \gamma_i x_i$$
 , $\gamma_i \in F$

Define the function $f: X \to Y$, such that $f(x) = \sum_{i=1}^{n} \gamma_i y_i$ to prove that

1- f linear transformation

Let
$$x, yX, \alpha, \in F$$

Then $x = \sum_{i=1}^{n} \delta_i x_i, y = \sum_{i=1}^{n} \mu_i x_i$
 $\rightarrow \alpha x + \beta y = \alpha \sum_{i=1}^{n} \delta_i x_i + \beta \sum_{i=1}^{n} \mu_i x_i$
 $= \sum_{i=1}^{n} (\alpha \delta_i + \beta \mu_i) x_i$
 $f(\alpha x + \beta y) = f\left(\sum_{i=1}^{n} (\alpha \delta_i + \beta \mu_i) x_i\right) = \sum_{i=1}^{n} (\alpha \delta_i + \beta \mu_i) y_i$
 $= \alpha \sum_{i=1}^{n} \delta_i y_i + \beta \sum_{i=1}^{n} \mu_i y_i$
 $= \alpha f(x) + \beta f(y)$
2- $f(x_i) = y_i$

 $x_i = 0 \cdot x_1 + 0 \cdot x_2 = \dots + 1 \cdot x_i + \dots + 0 \cdot x_n$

 $f(x_i)$

$$= f(0 \cdot x_{1} + 0 \cdot x_{2} + \dots + 1 \cdot x_{i} + \dots + 0 \cdot x_{n})$$

= $f(0 \cdot x_{1}) + f(0 \cdot x_{2}) + \dots + f(1 \cdot x_{i}) + \dots + f(0 \cdot x_{n})$
= $0 \cdot f(x_{1}) + 0 \cdot f(x_{2}) + \dots + 1 \cdot f(x_{i}) + \dots + 0 \cdot f(x_{n})$
= $0 + 0 + \dots + 1 \cdot y_{i} + \dots + 0 = y_{i}$
 $f(x_{i}) = y_{i}$

3- f has only one linear transformation (unique method) If $g: X \to Y$ is a linear transformation such that $g(x_i) = y_i$ To prove that f(x) = g(x)

Let $x \in X \rightarrow x$ has unique method

$$x = \sum_{i=1}^{n} \gamma_i x_i$$
$$g(x) = g\left(\sum_{i=1}^{n} \gamma_i x_i\right) = \sum_{i=1}^{n} \gamma_i g(x_i) = \sum_{i=1}^{n} \gamma_i y_i = f(x)$$

Example:

Find the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$f(1,1) = (0,2), f(3,1) = (2,-4)$$

Solution

Let $(x, y) \in \mathbb{R}^2$

$$\rightarrow (x, y) = \alpha_1(3, 1) + \alpha_2(1, 1)$$
$$= (3\alpha_1, \alpha_1) + (\alpha_2, \alpha_2)$$
$$= (3\alpha_1 + \alpha_2, \alpha_1 + \alpha_2)$$

$$\rightarrow x = 3\alpha_1 + \alpha_2$$

$$-y = -\alpha_1 \mp \alpha_2$$

$$x - y = 3\alpha_1 - \alpha_1$$

$$x - y = 2\alpha_1$$

$$\alpha_1 = \frac{x - y}{2}$$

$$\rightarrow x = 3\alpha_1 + \alpha_2$$

$$y = \alpha_1 + \alpha_2 \quad * 3$$

$$x = 3\alpha_1 + \alpha_2$$

$$-3y = -3\alpha_1 \mp 3\alpha_2$$

$$x - 3y = \alpha_2 - 3\alpha_2$$

$$x - 3y = -2\alpha_2$$

$$\alpha_2 = \frac{3y - x}{2}$$

$$f(x, y) = \alpha_1 f(3, 1) + \alpha_2 f(1, 1)$$

$$= \alpha_1 (2, -4) + \alpha_2 (0, 2)$$

$$= \frac{x - y}{2} (2, -4) + \frac{3y - x}{2} (0, 2)$$

$$= (x - y, 2y - 2x) + (0, 3y - x)$$
$$= (x - y, 5y - 3x)$$

Definition:

Let $f: X \to Y$ is a linear transformation then the kernel of f denoted by ker(f) and define as follows:

$$ker(f) = \{x \in X : f(x) = 0\}$$

i.e\ker(f) = f⁻¹({0})

<u>Theorem:</u>

if $f: X \to Y$ is a linear transformation then

1- Ker(f) is a subspace of X 2- $Ker(f) = \{0\}$ iff f is one-to -one

Proof

1-

$$a$$
- Since $f(0) = 0$
 $\rightarrow 0 \in ker(f)$
 $\rightarrow ker(f) \neq \emptyset$
 b - Let $x, y \in ker(f), \alpha, \beta \in F$
Since $x \in ker(f) \rightarrow f(x) = 0$ and
 $y \in ker(f) \rightarrow f(y) = 0$
Now, $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) = 0 + 0 = 0$

Then
$$f(\alpha x + \beta y) = 0$$

 $\rightarrow \alpha x + \beta y \in ker(f)$
 $\rightarrow ker(f)$ is a subspace

2- Suppose that $ker(f) = \{0\}$ To prove that f is one -to - oneLet $x, y \in X$ such that f(x) = f(y) f(x) - f(y) = 0 $\rightarrow f(x - y) = 0$ $\rightarrow x - y \in ker(f)$ x - y = 0 $\rightarrow x = y$ $\rightarrow f$ is one-to-one <u>The converse :</u>

Suppose that f is linear transformation one –to- one

To show that $ker(f) = \{0\}$

Let
$$x \in ker(f) \to f(x) = 0$$

Since f(0) = 0

0 = 0

 $\rightarrow f(x) = f(0)$

Since f linear one-to-one

$$x = 0$$
$$ker(f) = \{0\}$$

<u>Theorem:</u>

Let $f: X \to Y$ linear transformation, if X finite dimension then the subspace f(x) also finite dimension

Proof

If dim(X) = 0 then $X = \{0\}$ And $f(X) = \{f(x) : x \in X\} = \{0\}$ $\rightarrow dim(f(x)) = 0$ If dim(X) = n > 0Let $B = \{x_1, x_2, ..., x_n\}$ basis of X and let $y \in f(X)$ $\rightarrow \exists x \in X$ such that f(x) = y

Since, B basis of $X \rightarrow x$ has only one method

$$x = \sum_{i=1}^{n} \lambda_i x_i , \lambda_i \in F$$

And

$$f(x) = \sum_{i=1}^{n} \lambda_i f(x_i)$$

$$y = \sum_{i=1}^{n} \lambda_i f(x_i) \dots (1)$$

Let $B' = \{f(x_1), f(x_2), \dots f(x_n)\}$
 $\rightarrow B'$ basis of $f(x)$
 $\rightarrow f(X)$ finite dimension

<u>Sylvester's law</u>

Let $f: X \to Y$ linear transformation , if X finite dimension then dim(X) = dim(ker(f)) + dim(f(x))

Corollary:

Let $f: X \to Y$ linear transformation if X, Y are finite dimension such that dim(X) = dim(Y) then the transformation f is a one- to one iff is one to

Proof

Suppose that f is a linear transformation dim(X) = dim(Y)and f is one- to -one

Since f is one-to-one

 $\rightarrow ker(f) = \{0\}$ (by theorem)

$$\rightarrow dim(ker(f)) = 0$$

By sylvester's law

$$dim(X) = dim(ker(f)) + dim(f(x))$$
$$\rightarrow dim(X) = dim(f(x))$$

Then dim(f(x)) = dim(y)

 $\rightarrow f(x) = y$

 $\rightarrow f$ is one to

The converse

Suppose that f is one to

 $\rightarrow y = f(x)$ and

dim(X) = dim(y) = dimf(f(x))

$$\rightarrow dim(f(x)) = 0 \rightarrow ker(f) = 0$$

 $\rightarrow f$ one-to-one

<u>Definition:</u>

Let X, Y vector space over afield F, we say that X, Y linear isomorphic and write $X \approx Y$ if linear transformation (one-toone, one to)

From X to Y the function is called linear isomorphism

<u>Theorem:</u>

If X be a vector space over F and X finite dimension dim(X) = n then $X \approx F^n$

Proof

Let $\{x_1, x_2, \dots, x_n\}$ basis of X

$$\rightarrow \forall x \in X, x = \sum_{i=1}^{n} \lambda_i x_i, \lambda_i \in F$$

Define the function $f: X \to F^n$ as follows

$$f(x) = (\lambda_1, \lambda_2, \dots, \lambda_n)$$

We prove that f is linear transformation , one-to-one, one to H.W

<u>Theorem:</u>

If X, Y are two finite dimension vectors space over a field F then $X \approx Y$ iff dim(X) = dim(Y)

Proof

Let $X \approx Y$

 $\rightarrow \exists$ linear transformation $f: X \rightarrow Y$

$$\rightarrow ker(f) = 0, f(x) = y dim(X) = dim(ker(f)) + dim(f(x)) = 0 + dim(y) = dim(y)$$

The converse

By theorem

$$X \approx F^n$$

And $y = F^n$

Then $X \approx Y$

Metric And Normed Space

Definition:

Let X be a non empty set a function $d: X \times X \rightarrow R$ such that

 $1 - d(x, y) \ge 0, \forall x, y \in X$ $2 - d(x, y) = 0 iff x = y, \forall x, y \in X$ $3 - d(x, y) = d(y, x), \forall x, y \in X$ $4 - d(x, y) \le d(x, z) = d(z, y), \forall x, y, z \in X$

Then (X, d) is said to be metric space

<u>Definition:</u>

Let X be a vector space over a a field R then a norm on X is a map $||.||: X \rightarrow R$ such that

1- $||x|| \ge 0, \forall x \in X$ 2- ||x|| = 0 iff x = 03- $||\lambda x|| = |\lambda|||x||, \forall x \in X, \lambda \in R$ 4- $||x + y|| \le ||x|| + ||y||, \forall x, y \in X$ Then (X, ||.||) is said to be normed space

<u>Example:</u>

Let X = R be a vector space over R and $||.||: R \to R$ such that $||x|| = |x|, \forall x \in R$ show that ||.|| is a norm on R

Solution

1- Let
$$x \in R \to ||x|| = |x| \ge 0 \to ||x|| \ge 0$$

2- Let $x \in R$ if $||x|| = 0 \to |x| = 0$
 $\to x = 0$ if $x = 0$
 $0 \to |x| = 0 \to ||x|| = |x| = 0 \to ||x|| = 0$
3- Let $x \in R$ and $\lambda \in R$ $||\lambda x|| = |\lambda|||x||$
 $||\lambda x|| = |\lambda||x|| = |\lambda|||x||$
4- Let $x, y \in R$
 $||x + y|| = |x + y| \le |x| + |y| = ||x|| + ||y||$
 $\therefore ||x + y|| \le ||x|| + ||y||$
 $\Rightarrow ||.||$ norm on R

 $\rightarrow (X, ||x||)$ normed space

<u>Remark:</u>

1- Holder's inqualty for

$$p, q \in R, \ni \frac{1}{p} + \frac{1}{q} = 1$$
 then
 $\sum |x_i y_i| \le (\sum |x_i|^p)^{\frac{1}{p}} (\sum |y_i|^p)^{\frac{1}{q}}$ if
 $p = 2, q = 2$ then
 $\sum |x_i y_i| \le (\sum |x_i|^2)^{\frac{1}{2}} (\sum |y_i|^2)^{\frac{1}{2}}$ is called
 $cushy - schwar's$ inequality
2- Minkowk's inequality

If $p \ge 1$ then

$$\left(\sum |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum |x_i|^p\right)^{\frac{1}{p}} + \left(\sum |y_i|^p\right)^{\frac{1}{p}}$$

Example:

Let $X = R^n$, be a vector space over R and $\|.\|_1, \|.\|_2, \|.\|_3$ and $\|.\|_4: R^n \to R$ define as follows.

$$\forall x \in \mathbb{R}^{n}, x = (x_{1}, x_{2}, \dots, x_{n})$$

$$1 - \|.\|_{1} = (\sum_{i=1}^{n} x_{i}^{2})^{\frac{1}{2}}$$

$$2 - \|.\|_{2} = \sum_{i=1}^{n} |x_{i}|$$

$$3 - \|.\|_{3} = max\{|x_{1}|, |x_{2}|, \dots, |x_{n}|\}$$

$$4 - \|.\|_{4} = (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}}$$

$$show that \|.\|_{i} are normed space on \mathbb{R}^{n} or not$$

Solution

 $\|.\|_1$

1- Since $x_i^2 \ge 0, \forall i = 0, 1, 2, ..., n \to \sum x_i^2 \ge 0 \to (\sum x_i^2)^{\frac{1}{2}} \ge 0$ 0 then $||x|| \ge 0$ 2- Let ||x|| = 0

$$\leftrightarrow \left(\sum x_i^2\right)^{\frac{1}{2}} = 0$$

$$\leftrightarrow \sum x_i^2 = 0$$

$$\leftrightarrow x_i^2 = 0$$

$$\leftrightarrow x_i = 0$$

$$\leftrightarrow x = 0$$

3- Let $x \in \mathbb{R}^n, \lambda \in \mathbb{R}$ $\lambda x = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$ $\|\lambda x\| = \left(\sum_{i=1}^n (\lambda x_i)^2\right)^{\frac{1}{2}} = |\lambda| \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = |\lambda| \|x\|$ 4- Let $x, y \in \mathbb{R}^n$

$$x + y = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n)$$

= $(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$
 $||x + y|| = \left(\sum_{i=1}^n (x_i + y_i)^2\right)^{\frac{1}{2}}$

By using minkowsk's inquelity

$$\leq \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} + \left(\sum_{i=1}^{n} y_{i}^{2}\right)^{\frac{1}{2}}$$
$$= \|x\| + \|y\|$$
$$\to \|x + y\| \le \|x\| + \|y\|$$

$$\|.\|_{2}$$

1- Since $|x_i| \ge 0, \forall i = 0, 1, 2, ..., n$

$$\sum |x_i| \ge 0 \rightarrow ||x|| \ge 0$$

$$2 \text{-Let} ||x|| = 0$$

$$\leftrightarrow \sum_{i=1}^n |x_i| = 0$$

$$\Rightarrow |x_i| = 0$$

$$\Rightarrow |x_i| = 0$$

$$\Rightarrow x_i = 0$$

$$\Rightarrow x = 0$$

3- Let
$$x \in R^n$$
, $\lambda \in R$

$$\lambda x = \lambda(x_1, x_2, ..., x_n) = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$
$$\|\lambda x\| = \sum_{i=1}^n |\lambda x_i| = \sum_{i=1}^n |\lambda| |x_i| = |\lambda| \sum_{i=1}^n |x_i| = |\lambda| \|x\|$$

4- Let $x, y \in \mathbb{R}^n$

$$x + y = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n)$$

= $(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

$$||x + y|| = \sum_{i=1}^{n} |x_i + y_i|$$

$$\leq \sum_{i=1}^{n} (|x_i| + |y_i|)$$

$$\leq \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |y_i| = ||x|| + ||y||$$

$$\to ||x + y|| \leq ||x|| + ||y||$$

$$\begin{split} \|.\|_{3} \\ 1 - Since |x_{i}| &\geq 0, \forall i = 0, 1, 2, ..., n \\ &\rightarrow max\{|x_{1}|, |x_{2}|, ..., |x_{n}|\} \geq 0 \rightarrow ||x|| \geq 0 \\ 2 - Let ||x|| &= 0 \\ &\leftrightarrow max\{|x_{1}|, |x_{2}|, ..., |x_{n}|\} = 0 \\ &\leftrightarrow |x_{i}| = 0 \\ &\leftrightarrow x_{i} = 0 \end{split}$$

3- Let
$$x \in \mathbb{R}^n$$
, $\lambda \in \mathbb{R}$

$$\lambda x = \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$
$$\|\lambda x\| = max\{|\lambda x_1|, |\lambda x_2|, \dots, |\lambda x_n|\}$$
$$= |\lambda|max\{|x_1|, |x_2|, \dots, |x_n|\} = |\lambda|||x||$$

 $\leftrightarrow x = 0$

4- Let $x, y \in \mathbb{R}^n$

$$x + y = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n)$$

= $(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

||x + y||

 $= max\{|x_1 + y_1|, |x_2 + y_2|, \dots, |x_n + y_n|\} \le max\{|x_1| + |y_1|, |x_2| + |y_2|, \dots, |x_n| + |y_n|\}$

$$\leq max\{|x_1|, |x_2|, ..., |x_n|\} + max\{|y_1|, |y_2|, ..., |y_n|\} = ||x|| + ||y||$$

 $\rightarrow ||x + y|| \le ||x|| + ||y||$

 $\|.\|_{4}$ H.W

<u>Remark:</u>

Every subspace of normed space is a normed space

<u>Theorem:</u>

Let X be a normed space then

$$1 - ||0|| = 0$$

$$2 - ||-x|| = ||x||, \forall x \in X$$

$$3 - ||x - y|| = ||y - x||, \forall x, y \in X$$

$$4 - ||x|| + ||y||| \le ||x - y|| \forall x, y \in X$$

Proof

$$\begin{array}{l} 1-,2-,3- \ H.W \\ 4-x = (x-y) + y \\ \|x\| = \|(x-y) + y\| \le \|x-y\| + \|y\| \\ \rightarrow \|x\| - \|y\| \le \|x-y\|...(1) \\ y = (y-x) + x \\ \|y\| = \|(y-x) + x\| \le \|y-x\| + \|x\| \\ \rightarrow \|y\| - \|x\| \le \|y-x\| = \|x-y\| \\ \rightarrow \|y\| - \|x\| \le \|x-y\| \quad (*-1) \\ -(\|y\| - \|x\|) \ge -\|x-y\| \\ \rightarrow \|x\| - \|y\| \ge -\|x-y\|...(2) \end{array}$$

From (1) and (2) we get

$$||x - y|| \le ||x|| - ||y|| \le ||x - y||$$

$$\to |||x|| + ||y||| \le ||x - y||$$

Example:

Let $1 \le P \le \infty$ and $\|.\|: \ell^P \to R$ such that $x \in \ell^P, x = (x_1, x_2, \dots, x_n, \dots)$ then $\|.\|$ is a normed on ℓ^P where $\|.\| = (\sum |x_i|^p)^{\frac{1}{p}}$

Solution
1- Let
$$x \in \ell^{p} \to x = (x_{1}, x_{2}, ..., x_{n}, ...)$$
 $||x|| = (\sum_{i=1}^{n} |x_{i}||^{p})^{\frac{1}{p}}$
 $\therefore |x_{i}| \ge 0, \forall i \to |x_{i}|^{p} \ge 0, \forall i$
 $\rightarrow \sum_{i=1}^{n} |x_{i}|^{p} \ge 0 \to (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}} \ge 0$ then
 $||x|| \ge 0$
2- Let $x \in \ell^{p}$, $x = (x_{1}, x_{2}, ..., x_{n}, ...)$
if $||x|| = 0 \to (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}} = 0$
 $\rightarrow \sum_{i=1}^{n} |x_{i}|^{p} = 0 \to |x_{i}|^{p} = 0 \to |x_{i}| = 0$
 $\rightarrow x_{i} = 0, \forall i \to x = 0$
If $x = 0 \to x = (0, 0, ..., 0, ...) \to x_{i} = 0, \forall i \to |x_{i}| = 0 \to |x_{i}|^{p} = 0 \to \sum_{i=1}^{n} |x_{i}|^{p} = 0 \to (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}} = 0 \to ||x|| = 0$
3- Let $x \in \ell^{p}, \lambda \in \mathbb{R}$
 $x = (x_{1}, x_{2}, ..., x_{n}, ...)$

$$\begin{split} \|\lambda x\| &= \|\lambda(x_{1}, x_{2}, \dots, x_{n}, \dots)\| = \|\lambda x_{1}, \lambda x_{2}, \dots, \lambda x_{n}, \dots\| \\ &= \left(\sum |\lambda x_{i}|^{p}\right)^{\frac{1}{p}} = \left(\sum |\lambda|^{p} |x_{i}|^{p}\right)^{\frac{1}{p}} \\ &= \left(|\lambda|^{p} \sum |x_{i}|^{p}\right)^{\frac{1}{p}} = (|\lambda|^{p})^{\frac{1}{p}} \left(\sum |x_{i}|^{p}\right)^{\frac{1}{p}} \\ &= |\lambda| \left(\sum |x_{i}|^{p}\right)^{\frac{1}{p}} = |\lambda| \|x\| \\ 4 \text{- Let } x, y \in \ell^{p}, x = (x_{1}, x_{2}, \dots, x_{n}, \dots), y = \\ (y_{1}, y_{2}, \dots, y_{n}, \dots) \\ \|x + y\| = \|x_{1} + y_{1}, x_{2} + y_{2}, \dots, x_{n} + y_{n}, \dots\| \\ &= \left(\sum |x_{i} + y_{i}|^{p}\right)^{\frac{1}{p}} \leq \left(\sum |x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum |y_{i}|^{p}\right)^{\frac{1}{p}} \\ &= \|x\| + \|y\| \end{split}$$

Example: Let $||.||: \ell^{\infty} \to R$ such that $||x|| = \sup |x_i|$, then ||.|| is a normed space H.W

<u>Example:</u>

Let $X = C[0,1] \rightarrow R$ be a function define as $||f|| = max\{|f(x)|, 0 \le x \le 1\}, \forall f \in X$

Show that ||f|| norm on X

Solution:

1- Since
$$|f(x)| \ge 0, \forall x \in [0,1] \rightarrow ||f|| \ge 0$$

2- Let $||f|| = 0 \leftrightarrow max\{|f(x)|, 0 \le x \le 1\} \leftrightarrow |f(x)| = 0, \forall x \in [0,1] \leftrightarrow f(x) = 0, \forall x \in [0,1] \leftrightarrow f = 0$
3- Let $f \in X, \lambda \in R$

$$\|\lambda f\| = max\{|(\lambda f)(x)|, 0 \le x \le 1\}$$

= max{|\lambda||f(x)|, 0 \le x \le 1}
= |\lambda| max{|f(x)|, 0 \le x \le 1} = |\lambda|||f||

4-Let $f, g \in X$

$$\begin{split} \|f + g\| &= max\{|(f + g)(x)|, 0 \le x \le 1\} \\ &= max\{|f(x) + g(x)|, 0 \le x \le 1\} \\ &\le max\{|f(x)| + |g(x)|, 0 \le x \le 1\} \\ &\le max\{|f(x)|, 0 \le x \le 1\} + max\{|g(x)|, 0 \le x \le 1\} \\ &= \|f\| + \|g\| \end{split}$$

Example:

Let X = C[0,1] and $||.||: X \to R$ be a function define as $||f|| = \int_0^1 |f(x)| dx$, $\forall f \in X$

Show that ||f|| norm on X

H.W

<u>Theorem:</u>

Every normed vector space is a metric space but the converse is not true in general

Proof

Let $(X, \|.\|)$ be a normed space defined $d: X \times X \to R$ by

$$d(x, y) = ||x - y||, x, y \in X$$

1- Since $d(x, y) = ||x - y|| \ge 0, \forall x, y \in X \to d(x, y) \ge 0$

2- If $x = y \rightarrow d(x, y) = ||x - x|| = 0$ if $d(x, y) = 0 \rightarrow ||x - y|| = 0 \rightarrow x - y = 0 \rightarrow x = y$ 3- $\forall x, y \in X$ d(x, y) = ||x - y|| = ||y - x|| = d(y, x)4- Let $x, y, z \in X$ x - y = x - z + z - y d(x, y) = ||x - y|| = ||x - z + z - y|| $\leq ||x - z|| + ||z - y|| = d(x, z) + d(z, y)$ $\rightarrow d(x, y) \leq d(x, z) + d(z, y)$ Then we get normed space is metric space The converse is H..W

Prodect Space

Definition:

Let X, Y be the set, the Cartesian product of X, Y denoted by $X \times Y$ and defined as follows :

 $X \times Y = \{(x, y), x \in X, y \in Y\}$

Then $X \times Y \neq Y \times X$ and if $X \neq \emptyset$ and $Y \neq \emptyset$ then $X \times Y \neq \emptyset$

- If X, Y are two vectors over F then we can defined

$$\forall (x_1, y_1), (x_2, y_2) \in X \times Y$$

 $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $\lambda(x_1, y_1) = (\lambda x_1, \lambda y_1), \forall \lambda \in F$

<u>Example:</u>

If $(X, ||. ||_1)$ and $(Y, ||. ||_2)$ are two normed spaces then $(X \times Y, ||. ||)$ is a normed space such that $||(x, y)|| = max\{||x||_1, ||y||_2\}, \forall (x, y) \in X \times Y$

Solution

1- Since $||x||_1 \ge 0, \forall x \in X$ and $||y||_2 \ge 0, \forall y \in Y \rightarrow max\{||x||_1, ||y||_2\} \ge 0 \qquad \rightarrow ||(x, y)|| \ge 0$ 2- $||(x, y)|| = 0 \leftrightarrow max\{||x||_1, ||y||_2\} = 0 \leftrightarrow ||x||_1 = 0, ||y||_2 = 0 \leftrightarrow x = 0, y = 0 \leftrightarrow (x, y) = 0$ 3- Let $(x, y) \in X \times Y, \lambda \in F$ $||\lambda(x, y)|| = max\{||\lambda x||_1, ||\lambda y||_2\} = |\lambda|||(x, y)||$ 4- Let $(x, y), (z, w) \in X \times Y$ (x, y) + (z, w) = (x + z, y + w) $||(x, y) + (z, w)|| = max\{||x + z||_1, ||y + w||_2\}$ $\le max\{||x||_1 + ||z||_1, ||y||_2 + ||w||_2\}$ $\le max\{||x||_1, ||y||_2\} + max\{||z||_1, ||w||_2\}$ = ||(x, y)|| + ||(z, w)||

Definition:

Let X be a normed space and let $x_0 \in X$, if r is a positive real number then the set $\{x \in X : ||x - x_0|| < r\}$ is a called

open ball and we called x_0 ball center, r ball radius and we denoted the open ball with center x_0 and radius r by $B_r(x_0)$ then we get

 $B_r(x_0) = \{ x \in X; \ \|x - x_0\| < r \}$

<u>Definition:</u>

Let X be a normed space and let $x_0 \in X$, if r is a positive real number then the set $\{x \in X : ||x - x_0|| \le r\}$ is a called closed ball and we called x_0 ball center, r ball radius and we denoted the closed ball with center x_0 and radius r by $\overline{B}_r(x_0)$ then we get

 $\bar{B}_r(x_0) = \{ x \in X; \|x - x_0\| \le r \}$

<u>Remark:</u>

1- In the special case $B_1(0) = \{x \in X; ||x|| < 1\}$ is called open unit and we called the set $\overline{B}_1(0) = \{x \in X; ||x|| \le r\}$ closed unit 2- We can prove that $a - B_r(x_0) = x_0 + rB_1(0)$ $b - \overline{B}_1(0) = x_0 + r\overline{B}_1(0)$

<u>Example:</u>

If X is a normed space then the open ball and closed ball is a convex set

Solution

Let $B_r(x_0)$ is an open ball with center x_0 and radius r to show that $B_r(x_0)$ is a convex set

Let
$$x, y \in B_r(x_0), \lambda \in F, 0 \le \lambda \le 1$$

Since $x \in B_r(x_0) \rightarrow ||x - x_0|| < r$ and
 $y \in B_r(x_0) \rightarrow ||y - x_0|| < r$
Now, $\underline{\lambda x} + (1 - \lambda)y - x_0 = \lambda x + (1 - \lambda)y - \underline{x_0} + \underline{\lambda x_0} - \underline{\lambda x_0}$
 $= \lambda(x - x_0) + (1 - \lambda)y - (1 - \lambda)x_0$
 $= \lambda(x - x_0) + (1 - \lambda)(y - x_0)$
 $||\lambda x + (1 - \lambda)y - x_0|| = ||\lambda(x - x_0) + (1 - \lambda)(y - x_0)||$
 $\le |\lambda|||x - x_0|| + |1 - \lambda|||y - x_0|| < \lambda r + (1 - \lambda)r$
 $= \lambda r + r - \lambda r = r$
 $\therefore ||\lambda x + (1 - \lambda)y - x_0|| < r$

$$\rightarrow \lambda x + (1 - \lambda)y \in B_r(x_0)$$

 $B_r(x_0)$ is a convex set

 $\overline{B}_r(x_0) H.W$

<u>Definition:</u>

Let A be a subset of a normed space X, we say that A is an open set in X if , $\forall x \in A \exists r > 0$ such that $B_r(x_0) \subseteq A$

<u>Remark:</u>

In a normed space we can prove that

1- Every open ball is an open set 2- Each \emptyset , X are open set 3- The union of finite or infinite open set is open set 4- The intersection of finite open set is open set 5- If $A \subseteq X$ then A is open set iff a equal to union of open set

<u>Definition:</u>

Let A be a subset of a normed space X, we say that $x \in A$ is interior point in A if, $\exists r > 0$ such that $B_r(z) \subseteq A$

The set of all element is interior points denoted by int(A) or A°

<u>Remark:</u>

we can prove that

 $1 - int(A) \subseteq A$ 2 - int(A) open set 3 - A open set iff int(A) = A 4 - int(int(A)) = int(A) $5 - int(A) = \bigcup \{M_i, M_i \text{ open set } M_i \subseteq A\} \qquad \text{then}$ int(A) largest open set contain A $6 - int(A) = \{x \in A : \exists r > 0, x + rB_1(0) \subseteq A\}$

Definition:

Let A be a subset of a normed space X, we say that A is an open set in X if complement of A is open set in X

<u>Remark:</u>

In a normed space we can prove that

- 1- Every closed ball is an closed set
- 2- Each Ø, X are closed set
- 3- The union of finite closed set is closed set
- 4- The intersection of finite or infinite closed set is closed set

<u>Theorem:</u>

If X normed space, then every set contain only one element is a closed set

Proof

Let $A = \{x\}$ we prove that A closed set

i.e \land *to show that* A^c *is open set*

let $y \in A^c \rightarrow y \notin A$ *, let* $x \in A$

 $||x - y|| > 0, x \neq y$

Take ||x - y|| = r, r > 0

Since $||x - y|| = r \rightarrow ||x - y|| \lessdot r \rightarrow x \notin B_r(y)$

$$\to A \cap B_r(y) = \emptyset$$

 $\to B_r(y) \subseteq A^c$

 $\rightarrow A^c$ open set

 \rightarrow A closed set

<u>Lemma:</u>

Every finite subset of a normed space is closed set

Proof

Let A be a sub set, A finite of a normed space in X If $A = \emptyset \rightarrow A$ closed set (by remark) If $A \neq \emptyset \rightarrow \exists x_1, x_2, ..., x_n \in X$ such that $A = \{x_1, x_2, ..., x_n\}$ since x_i closed set $\forall i = 1, ..., n \rightarrow A = \bigcup_{i=1}^n x_i$ closed set (by remark)

<u>Definition:</u>

Let A be a subset of a normed space, say the point $x \in X$ accumulation point or limit point of a set A iff \forall open set G in X contain x other point $y \ y \neq x, y \ in A \ or \ if G \ open \ set in X \ and$ $x \in G \ then \ A \cap \left(\frac{G}{\{x\}}\right) \neq \emptyset$

The set of all limt point of A denoted by A'

Definition:

Let A be a subset of a normed space X, the set $A \cup A'$ is called closure of A and denoted by \overline{A} (i.e $\overline{A} = A \cup A'$

<u>Remark:</u>

By definition we can prove

$$1 - A \subseteq \overline{A}, A' \subseteq \overline{A}$$

$$2 - x \in \overline{A} \text{ iff } \forall r > 0 \exists y \in A \ni ||x - y|| < r$$

$$3 - \overline{A} \text{ closed set}$$

$$4 - A \text{ close set iff } A = \overline{A}$$

$$5 - \overline{\overline{A}} = \overline{A}$$

$$6 - \overline{A} = \cap \{M_i \setminus M_i \text{ closed set }, A \subseteq M_i\} \overline{A} \text{ smallest closed set} \text{ contain } A$$

$$7 - \overline{A} = \bigcap_{r > 0} (A + r\overline{B_1}(0))$$

<u>Theorem:</u>

If M is a subspace of a normed space then \overline{M} is subspace

<u>Definition:</u>

Let X be a non-empty set, then the function $f: N \to X$ such that $\forall n \in N \exists$ only one element such that $f(n) = x_n$ is called a sequence in X

We denoted of f by $\{x_n\}$ and id said to be

n-terme of sequence

The range of sequence $\{x_n\}$ is set $\{x_n, n \in N\}$

If $x_n = 2(-1)^{n-1}$, $n \in N$ is a sequence define on R then $\{x_n\} = \{2(-1)^{n-1}\} = \{2, -2, 2, -2, ...\}$ is a sequence

But $\{x_n, n \in N\} = \{2, -2\}$ is a range

<u>Definition:</u>

Let $\{x_n\}$ be a sequence in a normed space X then $\{x_n\}$ is said to be converge in X if there exist $x \in X$ such that for any $\epsilon > 0, \exists k \in Z^+$ such that

 $\|x_n - x\| < \epsilon, \forall n > k$

x is said to be a convergent point

 $x_n \to x \leftrightarrow \ \|x_n - x\| \to 0$

If x_n is non – convergent then said to be divergent

<u>Theorem:</u>

If the sequence $\{x_n\}$ is a convergent in a normed space x then the convergent point is unique

Proof Let $x_n \to x$, and $x_n \to y$ such that $x \neq y$ And let $||x - y|| = \epsilon \to \epsilon > 0$ Since $x_n \to x$ $\Rightarrow \exists k_1 \in Z^+$ such that $||x_n - x|| < \frac{\epsilon}{2}, \forall n > k_1$ And since, $x_n \to y$ $\Rightarrow \exists k_2 \in Z^+$ such that $||x_n - y|| < \frac{\epsilon}{2}, \forall n > k_2$ Take $k = max\{k_1, k_2\}$ then $||x_n - x|| < \frac{\epsilon}{2}, ||x_n - y|| < \frac{\epsilon}{2}, \forall n > k$ $\epsilon = ||x - y|| = ||x + x_n - x_n - y|| = ||(x - x_n) + (x_n - y)||$ $= ||-(x_n - x) + (x_n - y)|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

 $\Rightarrow \epsilon < \epsilon \pmod{\#}$

 $\Rightarrow x = y$

<u>Theorem:</u>

Let $\{x_n\}, \{y_n\}$ are sequence in a normed space X such that $x_n \rightarrow x, y_n \rightarrow y$ then

 $1- x_n + y_n \to x + y$ $2- \lambda x_n \to \lambda x$ $3- ||x_n|| \to ||x||$ $4- ||x_n - y_n|| \to ||x - y||$

Proof

1-
$$||(x_n + y_n) - (x + y)|| = ||(x_n - x) + (y_n - y)|| \le ||x_n - x|| + ||x_n - y||$$
 since
 $x_n \to x \Rightarrow ||x_n - x|| \to 0$

And

$$y_n \to y \Rightarrow ||y_n - y|| \to 0$$

Then

$$||x_n - x|| + ||x_n - y|| \to 0$$
$$\Rightarrow ||(x_n + y_n) - (x + y)|| \to 0$$

Then $x_n + y_n \rightarrow x + y$

2- H.W
3- Since
$$|||x_n|| - ||x||| \le ||x_n - x||$$
 and $||x_n - x|| \to 0$
 $|||x_n|| - ||x||| \le ||x_n - x|| \to 0$
 $|||x_n|| - ||x||| \to 0$
 $\Rightarrow ||x_n|| \to ||x||$

4-
$$|||x_n - y_n|| - ||x - y||| \le ||(x_n - y_n) - (x - y)|| \le ||x_n - x|| + ||x_n - y||$$

And

$$x_n \to x \Rightarrow ||x_n - x|| \to 0$$

$$y_n \to y \Rightarrow ||y_n - y|| \to 0$$

$$\Rightarrow ||x_n - x|| + ||x_n - y|| \to 0$$

$$\Rightarrow |||x_n - y_n|| - ||x - y||| \to 0$$

$$\Rightarrow ||x_n - y_n|| \to ||x - y||$$

<u>Definition:</u>

Let $\{x_n\}$ is a sequence in a normed space X we say that $\{x_n\}$ is a coushy sequence in X if $\forall \epsilon > 0, \exists k \in Z^+$ such that

 $||x_n - x_m|| < \epsilon, \forall n, m > k$

<u>Theorem:</u>

Every convergent sequence is a caushy sequence

Proof

Let $\{x_n\}$ is a converg sequence to x

 $\Rightarrow x_n \rightarrow x$

Let $\epsilon > 0$, since $x_n \to x$ and $\epsilon > 0 \to \frac{\epsilon}{2} > 0$ $\Rightarrow \exists k \in Z^+$ such that $||x_n - x|| < \epsilon, \forall n > k$ if n, m > k

$$\Rightarrow ||x_n - x_m|| = ||x_n - x_m + x - x||$$

$$= ||(x_n - x) + (x_m - x)||$$

$$\le ||x_n - x|| + ||x_m - x|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$\Rightarrow ||x_n - x_m|| < \epsilon, \forall n, m > k, k \in Z^+$$

 $\Rightarrow \{x_n\}$ is a coushy sequen

<u>Definition:</u>

Let $\{x_n\}$ be a sequence in a normed space X we say that $\{x_n\}$ is a bounded sequence if there exsists a positive number M such that $||x_n|| \le M, \forall n \in Z^+$

<u>Theorem:</u>

If $\{x_n\}$ is a coushy sequence in a normed space X then $\{x_n\}$ is a bounded

Proof

Let $\epsilon = 1$, $\epsilon > 0$ Since $\{x_n\}$ is a coushy sequence $\Rightarrow \exists k \in Z^+ \ni ||x_n - x_m|| < 1, \forall n, m > k$ Let m = n + 1 $\Rightarrow ||x_n - x_{n+1}|| < 1, \forall n > k$ Since $|||x_n|| - ||x_{n+1}||| < ||x_n - x_m|| < 1$ $\Rightarrow ||x_n|| - ||x_{n+1}|| < 1, \forall n > k$ $\Rightarrow ||x_n|| < 1 + \Rightarrow ||x_{n+1}||, \forall n > k$ $Take \ M = max\{||x_1||, ||x_2||, \dots, ||x_n||, ||x_{n+1}||, ||x_{n+1}|| + 1\}$ $\Rightarrow ||x_n|| \le M, \forall n \in Z$

Corollary:

Every converg sequence in a normed space X is a bounded sequence

Definition:

We say that a normed space X is a complete space iff for any coushy sequence in X is a converge sequence in X

A complete normed space is said to be banach space

<u>Example:</u>

A space F^n with norm $||x|| = (\sum_{i=1}^n |x|^2)^{\frac{1}{2}}$,

 $\forall x = (x_1, x_2, \dots, x_n) \in F^n$ is a banach space

Solution:

1- F^{n} normed space (proof???) 2- Let $\{x_{n}\}$ is a cauchy sequence in F^{n} $\Rightarrow x_{n} \in F^{n} \Rightarrow x_{n} = (x_{1n}, x_{2n}, ..., x_{in})$ Let $\epsilon > 0$, $\exists k \in Z^{+}$ such that $||x_{m} - x_{I}|| < \epsilon, \forall m, I > k$ $||x_{m} - x_{I}||^{2} < \epsilon^{2}$ $\therefore x_{m} - x_{I} = (x_{1m} - x_{1I}, x_{2m} - x_{2I}, ..., x_{im} - x_{iI})$ $\Rightarrow ||x_{m} - x_{I}|| = \sum |x_{im} - x_{iI}|^{2}$

Since

$$\|x_m - x_I\|^2 < \epsilon^2, \forall m, I > k$$

 $\Rightarrow ||x_m - x_I|| < \epsilon, \forall m, I > k$ Then for any $i \in I, \{x_{im}\}$ is a cauchy sequence in FSince F is complete (because F either R or C) $\Rightarrow \text{ for any } \|x_{im} - x_{il}\| < \frac{\epsilon}{\sqrt{n}}$ $Put \ x = (x_1, x_2, \dots, x_n) \Rightarrow x \in F^n$ $Let \ \epsilon > 0 \exists k \in Z^+ \text{ for any } m > k \text{ we get}$ $\|x_n - x\|^2 = \sum_{i=1}^n |x_{in} - x_i|^2 < \epsilon^2$

$$\Rightarrow \|x_{in} - x\| < \epsilon$$

 $\Rightarrow < x_n >$ is a converge

 $\Rightarrow F^n$ complete

From (1) and (2) we get F^n is a banach space

Example: H.W

The space L^p $(1 \le p \le \infty)$ with norm

 $||x|| = (\sum_{i=1}^{n} |x_i|^p)^{\frac{1}{p}}, \forall x = (x_1, x_2, ...) \in L^p$ is a banach space

Example:

A space L^{∞} with norm $||x|| = \sup |x_i|$

$$\forall x = (x_1, x_2, ...) \in L^{\infty}$$
 is a banach space

Solution

1- L^{∞} is a normed space H.W 2- Let $< x_m >$ is a cauchy sequence in L^{∞}

$$\Rightarrow x_{m} \in L^{\infty}$$

$$\Rightarrow x_{m} = (x_{1m}, x_{2m}, \dots, x_{nm}, \dots)$$
Let $\epsilon > 0, \exists k \in N \Rightarrow$

$$\|x_{m} - x_{L}\| < \epsilon, \forall m, L > k$$

$$\because x_{m} - x_{L} = (x_{1m} - x_{1L}, x_{2m} - x_{2L}, \dots, x_{nm} - x_{nL}, \dots)$$

$$\|x_{m} - x_{L}\| = sup|x_{im} - x_{iL}|$$

$$\Rightarrow sup|x_{im} - x_{iL}| < \epsilon, \forall m, L > k$$

$$\Rightarrow |x_{im} - x_{iL}| < \epsilon, \forall m, L > k \text{ for any } i$$
Any $< x_{im} > is a \text{ cauchy sequence in } F$
Since F is a complete

$$\Rightarrow < x_{im} > \text{ converge in } F$$
Then $\exists x_{i} \in F$ such that
 $< x_{im} > \text{ converge to } x_{i}$
Put $x_{i} = (x_{1}, x_{2}, \dots)$

$$\|x_{im} - x_{i}\| < \epsilon, \forall m > k$$

$$\because x_{m} \in L^{\infty} \Rightarrow \exists k_{m} \in R \Rightarrow$$

$$\|x_{im}\| \le k_{m}, \forall i$$
 $x_{i} = (x_{i} - x_{im}) + x_{im}$

$$|x_{i}| \le |x_{i} - x_{im}| + |x_{im}| < \epsilon + k_{m}, \forall m > k$$

$$\forall x \in L^{\infty}$$

$$\|x_m - x\| = \sup |x_{im} - x_i| < \epsilon$$

 $\Rightarrow x_m \rightarrow x$

 $\Rightarrow L^{\infty}$ is a complete

Definition:

Let $(X, \|.\|_1)$ and $(Y, \|.\|_2)$ be two normed space, a function $f: X \to Y$ is said to be continous at $x_0 \in X$ if $\forall \epsilon > 0, \exists \delta > 0, \|x - x_0\|_1 < \delta$ $\Rightarrow \|f(x) - f(x_0)\|_2 < \epsilon$ Equivelently $\forall x_n \to x_0 \text{ in } X$ $\Rightarrow f(x_n) \to f(x) \text{ in } Y$

We say that f is a continous of each point of X

<u>Example:</u>

Let *X* be a normed space then the function $f: X \to R$ such that f(x) = ||x|| is a continous

Solution

Let
$$x_n \to x_0$$
 in X

$$\Rightarrow ||x_n - x_0|| \to 0, n \to \infty$$

$$|f(x_n) - f(x_0)| = |||x_n|| - ||x_0|||$$

$$\leq ||x_n - x_0|| \to 0$$

$$\Rightarrow |f(x_n) - f(x_0)| \to 0, n \to \infty$$

$$\Rightarrow f(x_n) \to f(x_0)$$
$$\Rightarrow f \text{ continous at } x_0$$
$$\Rightarrow f \text{ continous}$$

Definition:

Let X, Y, Z are normed space, we say that $f: X \times Y \to Z$ continous at point $(x_0, y_0) \in X \times Y$ if $f(x_n, y_n) \to f(x_0, y_0)$, $\forall x_n \to x_0$ in X and $\forall y_n \to y_0$ in Y

<u>Theorem:</u>

Let X be a normed space on a felid F then

1- $f: X \times X \to X$, $f(x, y) = x + y, \forall x, y \in X$ 2- $f: F \times X \to X$, $g(\lambda y) = \lambda x, \forall \lambda \in F, x \in X$ are continous function

Proof

 $1 - Let x_n \to x_0, y_n \to y_0$ $\|f(x_n, y_n) - f(x_0, y_0)\| = \|(x_n + y_n) - (x_0 + y_0)\|$ $= \|(x_n - x_0) + (y_n - y_0)\|$ $\leq \|(x_n - x_0)\| + \|(y_n - y_0)\|$ Since $\|(x_n - x_0)\| \to 0, \|(y_n - y_0)\| \to 0$ $\Rightarrow \|(x_n - x_0)\| + \|(y_n - y_0)\| \to 0$

$$\Rightarrow ||f(x_n, y_n) - f(x_0, y_0)|| \to 0 \Rightarrow f(x_n, y_n) \to f(x_0, y_0) \Rightarrow f continous function in (x_0, y_0) 2- Let $\lambda_n \to \lambda$, in $F x_n \to x_0$ in $X ||g(\lambda_n, x_n) - g(\lambda, x_0)|| = ||(\lambda_n x_n) - (\lambda x_0)|| = ||\lambda_n x_n - \lambda x_0 + \lambda_n x_0 - \lambda_n x_0|| = ||\lambda_n (x_n - \lambda_n x_0) + \lambda_n (x_0 - \lambda x_0)|| \le |\lambda_n|||(x_n - x_0)|| + |x_0|||(\lambda_n - \lambda)|| Since |\lambda_n - \lambda| \to 0, |x_n - x_0| \to 0 \Rightarrow ||g(\lambda_n, x_n) - g(\lambda, x_0)|| \to 0 \Rightarrow g(\lambda_n, x_n) \to g(\lambda, x_0) \Rightarrow g continous function$$$

<u>Example:</u>

Let X, Y are normed space , $f: X \to Y$ linear transformation if f continous at 0 then f continous at each point

Proof

Let
$$x_n \to x_0$$
 in X
 $\Rightarrow x_n - x_0 \to 0$
Since f continous at 0
 $\Rightarrow f(x_n - x_0) \to f(0)$
Since $f(0) = 0$, f linear
 $f(x_n - x_0) = f(x_n) - f(x_0)$

$$\Rightarrow f(x_n) - f(x_0) \to 0$$

$$\Rightarrow f(x_n) \to f(x_0)$$

$$\Rightarrow f \text{ continuos at } x_0$$

$$\Rightarrow f \text{ continous at each point}$$

<u>Note:</u>

The set of all linear function from X in to Y will be denoted by L(X, Y)

If $f: X \to X$ denoted L(X)

<u>Theorem:</u>

Let $(X, \|.\|)$ and $(Y, \|.\|)$ be a normed space and let $f: X \to Y$ be a linear function, then f is a continous iff f is a continous at 0

Proof

Suppose that f is a continous at 0 Let $x_n \to x$ in X $\Rightarrow x_n - x \to 0$

Since f continous at 0

 $\Rightarrow f(x_n - x) \rightarrow f(0)$ in Y

Since f(0) = 0 and f linear

$$f(x_n - x) = f(x_n) - f(x)$$

$$\Rightarrow f(x_n) - f(x) \to 0$$

$$\Rightarrow f(x_n) \to f(x)$$
$$\Rightarrow f \text{ continuos at } x$$

The conversely H.W